

TO:	Mayor and Councilmembers
FROM:	Vyto Adomaitis, Director of Neighborhood Services & Public Safety
CONTACT:	Claudia Dato, Senior Project Manager
SUBJECT:	Goleta Community Center Special Studies Update

RECOMMENDATION:

- A. Receive a report on special studies conducted at the Goleta Community Center; and,
- B. Direct staff to proceed with immediate repairs to the Goleta Community Center at an estimated cost of \$38,000; and,
- C. Direct staff to include a Capital Improvement Program 5-Year Project Sheet in the FY 2017/18 & FY 2018/19 Budget for priority repairs, fire and life safety improvements, ADA updates, seismic improvements, and equipment replacement for the Community Center.

BACKGROUND

The Goleta Community Center property is located at 5679 Hollister Avenue and was formerly the Goleta Union School (School), which was constructed in 1927. The School was closed in 1976, and in 1977 the property was leased with an option to purchase to the County of Santa Barbara (County). In 1984, the County subleased the property to the Goleta Valley Community Center (GVCC), a California nonprofit corporation. Upon incorporation in 2002, the City of Goleta (City) assumed the then existing lease from the County, and became the GVCC's landlord. The City exercised the option to purchase the Community Center in 2013. Since that time the City has leased the property to the GVCC and waived all lease payments. Most recently, a two-year interim lease and management agreement was executed with the GVCC in February 2017.

Over the past several years, the City Council has considered varying levels of repair and investment in the aging facility and directed staff to analyze options for managing the Community Center property and the ongoing activities there. On April 18, 2016, the City Council conducted a public workshop to discuss many of these issues. At the conclusion of this workshop, Council agreed that more information was needed before final direction could be given. Specifically, Council directed staff to spend approximately \$100,000 to conduct investigative studies including a historic resource evaluation and limited destructive investigative studies related to hazardous materials and facility condition. The City Council also directed staff to perform water and air quality testing as a top priority.

Based on that direction, staff immediately requested proposals from three consultants and selected FCG Environmental to conduct water and air quality testing in the Community Center and onsite educational buildings (Rainbow School and Headstart). The results of this testing are discussed in greater detail under the Discussion section of this report. In general, the results were very favorable, especially given the age of the Community Center and its accessory buildings.

Staff also released a Request for Qualifications/Request for Proposals (RFQ/RFP) for a Phase I/II historic resource evaluation of the Community Center and educational buildings, with the exception of the Boys and Girls Club and the portable structures. On July 19, 2016, the City Council awarded a contract to Page & Turnbull, Inc. for this work. Page & Turnbull initially completed a Phase 1 Historic Resource Evaluation that evaluated whether the buildings would be eligible for listing in the national or state historic resource registries. Results of the Phase 1 study indicated that only the Community Center building is eligible for listing. Once a building has been found to be eligible, a Phase II analysis looks at potential environmental impacts from proposed repairs, upgrades, renovation or demolition of the building and mitigation options under the California Environmental Quality Act (CEQA). The Phase II analysis is discussed in greater detail following this section.

Based on City Council direction, staff also issued an RFQ/RFP for consultant services to conduct both a hazardous materials assessment and a property condition assessment of the Community Center, including more invasive (destructive) and advanced techniques to assess conditions not readily visible. All previous studies had only assessed conditions which could be observed without destructive investigation (i.e. breaking into walls). In consideration of their age, the Headstart and Rainbow School buildings were also included in the proposal. Council awarded a contract to Partner Engineering and Science in September 2016.

All three of these studies have since been completed, and the results are detailed below. Binders with all of the special studies have been provided to the City Council, and were made available to the public as well.

DISCUSSION

Water and Air Quality Testing

Last summer, FCG Environmental conducted air and water sampling assessments within the Goleta Community Center and on-site educational structures to assess the presence of mold and/or moisture issues, asbestos and heavy metals. The results of these tests are summarized below:

Summary of Water Quality Analysis:

The water quality analysis consisted of the collection of water samples from rooms and common areas within each building having potable water sources to document potential heavy metals contamination from piping systems. The analysis also looked at general water quality conditions from the main water supply inlet. The main water supply was analyzed for a variety of general drinking water standards, including: minerals, disinfectant byproducts, coliform bacteria, organic compounds and heavy metals. The drinking water sources within the various buildings and classrooms were tested for lead, copper, arsenic and zinc.

Of the drinking water tests, one sample showed lead concentrations at the recommended maximum level of 15 parts per billion. This sample was collected from a drinking fountain in Room 13 at the Rainbow School. Based on this finding, staff immediately contacted the Executive Director/Owner of the Rainbow School as well as Goleta Valley Community Center management staff. The owner of the Rainbow School, informed City staff that Room 13 is the room where the youngest children are cared for (also known as the "baby room") and to her knowledge the drinking fountain has not been used in 30 years. However, as a precaution, Community Center staff turned off the water supply to the drinking fountain. *Other than the exception noted, the general water quality analysis revealed that the main water supply to the property was within the parameters of the various standards required for drinking water systems.*

Summary of Air Quality Assessment

Three types of air quality testing were conducted by FCG Environmental (FCG): general indoor air quality, airborne fungal (mold) testing, and airborne asbestos testing. Each of these is further detailed below.

General Indoor Air Quality:

FCG monitored general indoor air quality through random grab sampling using a field instrument specially designed to read temperature (°F), relative humidity (RH %), carbon monoxide (CO), and carbon dioxide (CO2). Air samples were also tested for volatile organic compounds, hydrogen sulfide, and oxygen levels. *None of the areas inspected showed evidence of detectable volatile compounds, methane gas, or hydrogen sulfide and all oxygen levels were within the normal, ambient range.*

Airborne Fungal Testing:

FCG also collected air samples from representative areas within each building to document airborne fungal spore counts (airborne mold). This testing was conducted along with outdoor sampling for comparison purposes. FCG collected a total of 31 air samples for laboratory analysis. *All of the air samples collected from interior classrooms, offices and common areas revealed total airborne mold spore concentrations that were within the outdoor background levels, at such low concentrations that they do not pose any significant health risk.*

Asbestos Air Sampling Assessment:

Asbestos air samples were collected from representative areas within all buildings to document the presence/absence of airborne asbestos fibers. A total of 19 air samples were collected. All of the interior air samples collected from representative areas within each building revealed airborne fiber concentrations which were well below the OSHA Permissible Exposure Limit and the EPA's recommended criteria for abatement.

Mold and Moisture Assessment

FCG staff conducted limited inspection of each building to determine obvious concerns related to potential mold growth or moisture conductions. An inspection of site conditions was performed to check for evidence of mold growth, water intrusion, odors or similar concerns. Moisture readings were taken from areas of concern or suspect growth.

The only area of concern was in one of the Headstart classrooms that has two sinks. Water damage and suspect mold growth were noted on the wood base shelves and lower walls within both sink cabinets. This is typical of routine leaking from the sink plumbing, water filtration systems, or from stored liquids within the cabinet. Staff learned that a leak had been repaired earlier in the year, but the inspection identified, and lab testing confirmed, a nearly confluent growth of Chaetomium, a type of mold which warranted remediation. Staff immediately contacted several licensed mold remediation contractors and ultimately, Pearl Bay Corporation remediated the mold and replaced part of the sink cabinet which fully addressed this finding.

More recently, staff had to hire contractors on an emergency basis after new water leaks in the Headstart classroom building resulted in the need for additional plumbing repairs and mold remediation.

In addition, staff was recently made aware of a room not included in the original assessment by FCG. Accessed through the outdoor patio via an unmarked door is a restroom that the janitorial staff has been using as storage for over 20 years. This room was not brought to our attention or FCG's during their inspections of the property. City Public Works staff recently evaluated the condition of the room and identified a water leak and possible mold, lead paint and asbestos materials. Public Works staff engaged Serve Pro to evaluate all of these issues to see what, if anything, should be addressed in the near term. The Community Center intends to continue use of this room for storage of janitorial supplies and not re-open it as a bathroom since another men's restroom exists nearby. If Serve Pro's evaluation results in additional items needing remediation, staff will authorize the remediation work as was done in the other two instances listed above.

Sewer Assessment

An assessment of sewer lines including laterals within the area of the Community Center and educational buildings and their connections to manholes was performed by Partner Engineering and Science, Inc. (Partner) in conjunction with C-Below Subsurface Company. The work was performed via a Closed-Circuit Television (CCTV) video surveillance investigation. *The results are presented in the attached summary report (Attachment 1) which includes a sketch showing where Partner located clogged pipes, shallow slope elevations, broken pipe lines, as well as various pipes with roots obstructing clear flow.*

Recommendation: Replace several pipes and clean-outs throughout the onsite sewer collection system.

Hazardous Materials Survey

<u>Asbestos</u>

Suspect asbestos-containing materials (ACM) were sampled from accessible areas within the interior and exterior of the buildings according to the guidelines set forth in 40 CFR Part 763 (Code of Federal Regulations, Title 40: Protection of the Environment), and later analyzed using the Polarized Light Microscopy (PLM) method. A total of one hundred (100) bulk samples of presumed ACM were collected for analysis. *Nineteen of those samples tested positive for asbestos:*

- Vinyl floor tiles in the Dining Room of the Community Center;
- Vinyl flooring in three classrooms of the Rainbow School; and
- Roof patching materials and penetration mastic on samples taken from all buildings.

Recommendation: The Environmental Protection Agency (EPA) recommends that all ACM be removed by a certified asbestos contractor *prior to any renovation or demolition activities that may impact the material.* In the absence of planned renovation/demolition activities, the EPA recommends that ACMs be managed in-place whenever asbestos is identified in a building. **Under the current conditions, no remediation is needed at this time.**

Lead-Based Paint

The subject property was visually inspected and potential Lead-Based Paint (LBP) was identified. Measurements were taken at these locations in areas representative of all painted or varnished surfaces using a hand-held XRF device. An XRF device is an elemental analysis instrument that uses X-ray fluorescence technology to determine each element that is present in a sample, and to quantify the elements present. A total of 225 XRF readings were collected throughout the property. *Thirty of the readings contained a lead content greater than 1.0 mg/cm2, which is the current regulatory threshold for the requirement of lead-safe work practices in the City of Goleta.* Most of the lead-based paint was found in the Community Center and included:

- Building components such as walls;
- Windows (sills and sashes);
- Doors (jambs and frames); and
- Exterior overhangs and columns.

Most of the LBP was found to be intact; however, a few samples were classified as poor (courtyard window sill) or fair (exterior windows). Additional LBP was found on exterior walls and doors overhangs and windows of the Headstart building. All of these areas were deemed intact. LBP was also found in the Rainbow School building (Building Three) on exterior overhangs and on the walls of two of the restrooms. These areas were also deemed to be intact.

Recommendation: Surfaces deemed to be poor are considered to be a hazard and should be corrected. Fair surfaces should be repaired, but are not yet considered to be a hazard. If not repaired, they should be monitored frequently. Intact surfaces should be managed under an Operations and Maintenance Plan which includes periodic inspections for condition changes in the paint

Other Hazards

In addition to the other hazards mentioned, the consultants surveyed all of the buildings for several other hazards including mercury, PCBs, radioactive hazards, and CFCs. The consultant also found:

- 850 mercury-based florescent lights;
- 265 florescent light ballasts containing PCBs throughout the buildings;
- 14 emergency signs containing radioactive sources;
- 4 rooftop HVAC compressor units containing CFCs; and
- 23 thermostats containing mercury.

Recommendation: The identified hazardous materials should be properly removed and segregated prior to renovation/demolition activities. Proper packaging and disposal should be conducted in compliance with federal, state, and local regulations.

Property Condition Assessment

The purpose of the Property Condition Assessment (PCA) was to evaluate the general overall physical condition of the subject property and to observe and document readily-visible material and building system defects. The PCA of the building systems and structural components was also performed by Partner Engineering and Science, Inc. (Partner) and included the Community Center and educational buildings. Partner's overall finding is that the subject property appears to be in good to fair condition for its age and usage. Partner's report also indicates that the overall level of preventative maintenance appears to be fair and generally appears to be reactive, rather than preventative. Partner defines "fair condition" to mean marginally satisfactory, with some immediate repairs required, and components/systems that are at or near the end of their useful life. The detailed observations of reviewed systems requiring repairs or upgrades are summarized in Attachment 1 of this report.

In order to shift away from reactive maintenance, the PCA includes a replacement reserve schedule. Items included in this schedule are determined based upon the estimated useful life (EUL) of a system or component, the apparent effective age (EA) of the system, and the remaining useful life (RUL) of that system. The PCA also

includes opinions of cost for the identified items. There are several immediate repairs that Partner identified that should be completed in the near future because of existing or potential unsafe conditions; material building code or fire code violations; or conditions, that if left uncorrected, have the potential to result in, or contribute to, critical element or system failure within one year or may result in a significant increase in remedial cost.

Recommendation: The following "immediate" repairs should be made in the near future:

- Repair crack in the basement foundation wall of the Community Center Building with epoxy injection;
- Clear soil away from pier footings in crawl space of the Community Center Building;
- Repair inoperable window mechanisms at east classrooms of the Community Center building;
- Replace sewer line between the Community Center office restroom cleanout and the men's restroom. Conduct further investigation for possible pump station; and
- Address non-compliant ADA features.

The estimated cost for the immediate repairs is detailed below.

Section No.	Deficiency or Repair Item	Quantity	Unit	Unit Cost	Immediate Repair	Total Cost
BUILDING	BUILDING STRUCTURE					
4.0	Repair crack in the basement foundation wall of the Community Center Building with epoxy injection	1	Lump Sum	\$2,000	\$2,000	\$2,000
4.0	Clear soil away from pier footings in crawl space of the Community Center Building	1	Lump Sum	\$1,000	\$1,000	\$1,000
EXTERIO	DR ENVELOPE					
5.3	Repair inoperable windows mechanisms at east classrooms of the Community Center building	1	Lump Sum	\$5,000	\$5,000	\$5,000
MECHAI	NICAL AND ELECTRICALSYSTEMS					
6.2	Replace sewer line between the Community Center office restroom cleanout and the men's restroom. Cost includes further investigation and possible pump station.	1	Lump Sum	\$30,000	\$30,000	\$30,000
	L			TOTAL	\$38,000	\$ 38,000

 Table 1 - Immediate Repairs and Deferred Maintenance (Partner)

Historic Resource Evaluation (HRE)

In December 2016, Page & Turnbull Historic Resource Consultants completed an HRE Part 1 analysis of the Community Center and educational buildings. The Boys & Girls Club building was not included because it represents newer construction and is not subject to an HRE.

This report provides a detailed account of the site's history and building architecture and evaluates them for listing as historic resources both on the National Register of Historic Places and California Register of Historical Resources. Of the three buildings evaluated, only the Community Center (a.k.a. Main Building/Building A) was found to be eligible for listing in the National Register and the California Register for its role in the consolidation of Goleta's education system and the growth of the town center as the area matured in the early 20th century. A detailed summary of the Historic Resource Assessments is provided as Attachment 2 of this report.

Although the Community Center building is the work of a notable local architect and engineer, Louis N. Crawford, and originally a good example of Mediterranean Revival architecture, alterations to the building have removed key features (such as the original red tile roofing and wooden windows on the west and east sides) that have impacted its ability to meet the criteria for listing under the category of architecture. The Community Center could potentially attain eligibility for its architecture if the missing, or altered features, particularly the red-tile roof, were restored. However, restoration of the missing features is not required for listing eligibility.

Historic Resource Evaluation – Part 2

Due to the finding in the HRE Part 1, an HRE Part 2 (Potential Impact Study) was prepared to evaluate potential impacts to the Community Center for three options, or scenarios, identified by the City. The three project scenarios evaluated were:

- 1. Scenario 1 Voluntary Upgrades targeted to address known seismic, fire/lifesafety, and ADA access deficiencies.
- 2. Scenario 2 Full Rehabilitation, a comprehensive exterior and interior rehabilitation with new building systems for continued Community Center use.
- 3. Scenario 3 Demolition of the Main Building and construction of a new Community center, with and without retaining the Main Building's front façade.

Please see page 15-29 in the *Potential Impact Report* for a complete evaluation of Page & Turnbull's recommendations and preservation considerations for the three development scenarios. The recommendations are too numerous to discuss in detail, but the following discussion provides a very brief overview of potential impacts to historic features. The *Potential Impact Report* also includes more comprehensive information on the *Secretary of the Interior's (SOI) Standards and Guidelines.*

Scenario 1

Upgrades for seismic; fire/life safety; and disabled access can often be accomplished without significantly impacting a historic building. The key is to design and construct the

project in compliance with the SOI Standards and follow the approach hierarchy outlined in the SOI Guidelines. With that in mind, Page & Turnbull provides a list of recommendations for Scenario 1 aimed at guiding the City in developing a SOI Standards-compliant project. See pages 15-20 of the *Potential Impact Report*.

Scenario 2

For Scenario 2, Page & Turnbull provides general guidance and strategies for developing a SOI Standards-compliant rehabilitation project that retains the Community Center's historic character. Among other things, rehabilitation work should avoid impacts on character-defining features, significant spaces and historic materials. See pages 21-26 of the *Potential Impact Report*.

Scenario 3

Scenario 3 explores the demolition of the Main Building of the Goleta Community Center either in full or as a partial demolition. Under partial demolition, most of the Community Center building would be demolished except for a certain amount of the front façade. A new building would be built behind and likely attached to the retained façade. Page & Turnbull provides three options to define the area of façade to retain, the most prominent being retention of the entire front and east and west gables, as well as the interior front corridor (Option C – see page 27 of the *Potential Impact Report*).

According to Page & Turnbull, demolition where only the front façade remains is in essence a full demolition. While slightly less impactful than full demolition, almost all of the character-defining features that make up the historic resource that is the Community Center building would still be lost. What remains would no longer be recognizable as a 1920s school building and would be unable to convey its significance as the Goleta Union School. Therefore, all of the partial demolition options, including Option C, would result in a significant adverse impact. An EIR would be needed to consider alternatives and mitigation measures. While in some instances these mitigation measures may reduce the level of the adverse impacts, they often are not adequate to mitigate the loss to community character and collective history. For this reason, full or partial demolition of the Community Center is not recommended.

Summary of Recommendations and Costs

One of the preeminent conclusions of the Property Condition Assessment is that the Community Center building is in fair to good condition. No significant structural deficiencies were identified that pose an immediate threat to life or safety. Based on Partner's assessments, the building can be brought up to a good condition altogether once the recommended immediate repairs are addressed. The estimated cost for these repairs is \$38,000 (see Table 1 on page 7 of this staff report).

In addition to providing cost estimates for the immediate repair recommendations, Partner also created a 10-year Replacement Reserve Cost Opinion Table (see Table 2 of the PCA). The Replacement Reserve Cost Opinion is based on replacement of existing systems and equipment (to maintain the status quo in good condition), and does not include consideration of upgrades. Partner recommends budgeting for the identified repair and replacement items moving forward to maintain the facility in good condition.

Over the 10-year reserve period used, Partner estimates approximately \$925,000 in replacement and maintenance costs, with approximately \$303,000 occurring in the first year. Table 2 on the following page details the recommended Year 1 reserve items and the costs of the immediate repairs needed (\$38,000). Based on the Replacement Reserve Cost Opinion, staff has provided a draft CIP project sheet that includes recommended annual budgets for the coming five years to coincide with the Replacement Reserve items identified over that same timeframe (Attachment 4). Staff is recommending that the City Council include this CIP Project Sheet in the coming two-year budget that begins with FY 2017/18. Details such as funding sources will be further defined during the upcoming budget process.

Sect No.	Deficiency or Repair Item	Quantity	Unit	Unit Cost	Total Cost		
BUIL	BUILDING STRUCTURE						
3.6	Asphalt seal coat and parking stall striping	102,000	SF	\$0.15	\$15,300		
3.6	Mill, grind and place asphalt overlay	102,000	SF	\$2.75	\$280,500 ¹		
MEC	HANICAL AND ELECTRICAL SYSTEMS						
6.1	Replace Split-System Condenser	3	Ton	\$1,200	\$3,600		
6.1	Replace Split-System Furnace Fan Coil	3	Ton	\$800	\$2,400		
6.2	Replace 40-gallon water heater 1		EA	\$1,000	\$1,000		
				TOTAL	\$302,800		

 Table 2 – Replacement Reserve Items – Year 1 (Partner)

In addition to the immediate repairs and Reserve Schedule items, staff is recommending that needed Seismic upgrades and ADA improvements be included in the FY 2017/18 & 2018/19 budget as indicated on the CIP project budget sheet provided. As reported in prior staff reports on the Community Center, in 2013 the Crosby Group prepared a detailed Seismic and ADA Study that recommended that the Community Center be upgraded to meet current Seismic standards and ADA requirements. The Cosby Group also completed a Fire/Life Safety Assessment that recommended installing a fire sprinkler system and fire alarm in the Community Center. The City Council considered these studies during the Civic Center Feasibility Study. Before making decisions related to these improvements, the City Council wanted more information on the historic status of the structure and the extent of potential hazardous materials.

¹ Depending on the depth assumed, this estimate may be low. Actual costs may be significantly higher.

The below table summarizes the projected costs for all of this work. These costs have also been included in the attached CIP project budget sheet.

Work Description	Cost
Fire Protection Upgrades (Community Center)	\$168,932
ADA Improvements	\$312,600
Seismic Upgrades	\$576,900
Subtotal:	\$1,058,432
15% Contingency	\$158,765
Total Immediate/Year 1 Costs:	\$1,217,197

 Table 3 – Recommended Seismic, ADA & Life/Safety Improvements

Other options identified for improvements to the Community Center include a more comprehensive renovation (Scenario 2) and demolition with reconstruction (Scenario 3) that were evaluated in the Historic Resource Evaluation by Page & Turnbull. Based on estimates prepared for the Civic Center Feasibility Study, a comprehensive remodeling/renovation of the Community Center (Scenario 2) would cost approximately \$5.3 million (in 2015 dollars), not counting the \$1.56 million for the necessary immediate repairs, Seismic, ADA and Life/Safety Improvements and costs associated with remediation of the asbestos and lead-based paint. Altogether, comprehensive renovation under Scenario 2 and demolition with construction of a new community center under Scenario 3 would cost between \$8 million and \$13.6 million, respectively.

FISCAL IMPACTS:

At this time staff is only recommending the immediate repairs outlined in Partner's assessment. The building can be brought up to good condition altogether once the recommended immediate repairs are addressed. The estimated cost for these repairs is \$38,000. Given the potential liability the City is facing with the Department of Finance over the pending Redevelopment Agency issues, as well as other priorities Council has expressed interest in pursuing, staff is not recommending a large scale renovation of the Community Center in the near future. Rather, a projected CIP project sheet has been provided for informational purposes, to propose an approach that would make necessary repairs and basic health and safety upgrades (Seismic, ADA and Life/Safety) over the span of two fiscal years, with on-going maintenance and replacement costs spread out over the longer term in concert with the reserve study recommended by Partner. Should Council desire the additional improvements beyond the immediate repairs of \$38,000, staff can return with a more in-depth analysis on potential funding options.

No additional appropriation is needed at this time. As noted below, there is currently \$304,256 in available General Fund budget that has been set aside to address Citywide building maintenance and improvements which can be used to fund the recommended immediate repairs.

GL Account	Account Name	FY 16/17 Available Budget
101-5-9069-706	CIP Services	\$304,256

ALTERNATIVES:

The Council may elect to not direct staff to move forward with immediate repairs as outlined in Partner's assessment. However, failure to conduct these repairs could result in higher future maintenance and repair costs, resulting in a larger liability to the City. Council may also elect to not include a CIP project budget sheet in the FY 2017/18 & FY 2018/19 budget cycle and be brought back at a later date when funding has been identified.

Legal Review By:

Michael Jenkins Acting City Attorney

Approved By:

oner

Michelle Greene City Manager

ATTACHMENTS:

- 1. Property Condition Assessment Summary
- 2. Historic Resource Evaluation Summary
- 3. Binder of Special Studies:
 - a. Air/Water Quality Report;
 - b. Sanitary Sewer Study;
 - c. Hazardous Materials Survey Report;
 - d. Property Condition Assessment;
 - e. Historic Resource Evaluation Part 1;
 - f. Historic Resource Potential Impact Study;
 - g. Seismic Study (ASCE 31-03 Tier 1 Evaluation Report);
 - h. Accessibility Assessment (ADA) Report; and
 - i. Fire & Life Safety Assessment Report
- 4. CIP Budget Sheet for Community Center Improvements

Attachment 1

Property Condition Assessment Summary

ATTACHMENT 1 PROPERTY CONDITION ASSESSMENT SUMMARY

Structural Issues

No significant structural deficiencies were identified that appear to pose an immediate threat to life safety or continued operation of the buildings. According to Partner, the structures appear to be in generally good repair. However, since these buildings were designed and constructed under older building codes, it appears that the expected seismic performance of the structures may not meet current life safety performance objectives in their current configurations.

Recommendations: The following recommendations were suggested to maintain the long term serviceability of the structures:

Main Building A – Community Center

- The building has a raised wood floor with a substructure crawl space. The piers that are visible from the interior two access openings have dirt over the concrete pads, in contact with the wood blocks and piers. The dirt covering the subarea piers should be lowered and removed or redistributed to separate the top of the pier and the wood post from the exposed dirt.
- There is a large vertical crack in the north basement wall near the northeast corner of the basement. The crack in the basement wall should be repaired by epoxy adhesive injection and monitored for further settlement cracking.
- As reported previously, there are a number of seismic improvements needed (e.g. additional roof sheathing, roof-to-wall anchoring, and blocking).

Building B – Headstart Classrooms

• As reported in the previous seismic study and by Partner, there are a few seismic upgrades recommended due to lack of adequate shear walls for the lateral seismic loads along the north side of the building and lack of adequate roof and wall sheathing.

Building C – Rainbow School Classrooms

• As reported in the previous seismic study and by Partner, there are a few seismic upgrades recommended due to lack of adequate shear walls for the lateral seismic loads in the north-south direction.

<u>Roofing</u>

Observed areas of the roofing system appeared to be in fair to good overall condition. According to building maintenance records, all roof systems were installed around or before 1995. No active roof leaks were reported at the time of the assessment. Pitched roofs are in fair condition, with some shingles having been replaced.

Recommendations:

- At the main Community Center building there are some areas of degradation and exposed felts at the south end of the roof where it meets the parapet; this area requires roof membrane replacement;
- The skylights in the Dining Hall are in fair condition with framing and glazing in poor condition. The skylight framing and glazing appear to be salvageable, but need work. Flashing at the skylight curb is damaged and needs to be repaired. Cleaning of the skylight frame and panes, as well as sealant replacement, are recommended;
- Observed sections of parapet and coping appeared to be in fair to poor condition and need maintenance/replacement; and
- The roofing of the Dining Hall should be replaced.

Site Hardscape

Walkways appear to be in good overall condition. Pavement was observed in generally fair condition at the front parking area; the pavement at the south, back parking area was observed in poor condition. The asphalt seal coat and pavement markings appear to be in poor condition. The asphalt pavement was noted to be severely cracked and worn in many locations. Displacement of pavement and potholes were also noted.

Recommendation: Based on the estimated useful life (EUL) and apparent condition, a mill, grind, and overlay of parking areas is recommended as well as periodically resealed asphalt surfaces. An opinion of cost is included in Table 2 of the PCA. Periodic application of water-repelling sealant to concrete walkways is also recommended.

Exterior Walls

The exterior walls of all buildings are in good overall condition. No signs of water intrusion or past leaks were noted or reported. Painting, replacing of building sealants, repairs to minor stucco cracks and wood ceiling repairs have been performed by on site staff and can be part of the regular maintenance.

Windows and Doors

Generally, the windows appeared to be, and were reported to be, in good to fair overall condition. No obvious signs of window leaks were evident. Original wood windows at the Community Center building will require refinishing. The original high wood windows at the Assembly Room/Auditorium show general age deterioration. All wood windows throughout the building need to be stripped and refinished with proper sealant and paint. The vinyl windows at the east elevation of the main building exhibit a jamb mechanism problem and they need to be repaired for better function. These units appear to be residential-grade and may not have been the proper units for this use.

Heating, Ventilation and Air Conditioning (HVAC)

One of the two single rooftop HVAC split units of Building B located on the walkway south roof does not appear to be operational. Maintenance of the unit should be performed but replacement is recommended. No other issues were observed.

Plumbing

The plumbing systems were reported to be in good overall condition. Observation of visible piping at water heaters and plumbing stub-outs indicates that the piping is copper. Evidence of leaks or faulty piping was not observed. However, since the Partner inspection, two leaks did occur inside a wall of one of the Headstart classrooms (since repaired). Routine maintenance is anticipated during the 10-year evaluation period.

Multiple gas-fired water heaters serve the buildings. The water heaters appeared to be in good overall condition. Two of the units were reported to be four years old and are not anticipated to require replacement during the 10-year evaluation period. However, one is expected to be replaced early in the term.

Sanitary drainage and vent piping is reported and observed to be cast iron and PVC.

Electrical and Lighting

Electrical service is provided to the property with underground lines connected to a utility-owned transformer located at the basement of the main building. Two electrical services are provided for the Community Center and Buildings B and C. Each service consists of 400 amp, 120/240 volts, three-phase, four wire services. Breaker subpanels for lighting and convenience outlets are located at the kitchen area and corridors of the Community Center building.

Electrical branch wiring was observed and reported to be copper. House panels are located throughout the buildings and generally consists of 200 amp, 120/240 volts single phase, three wire panels. Ground-fault interrupter circuits were observed in the kitchen.

Electrical service was reported to be adequate for the current demands of the facility. Observed switchgear, circuit breaker panels, electrical meter and wiring components appeared to be in good overall condition. Infrared scans of the electrical switchgear and panels throughout the property revealed all equipment is in good condition and no deficiencies were noted. Although there was some observation of old knob-and-tube wiring, this was disconnected at some point and none of this wiring was in service any longer.

The interior lighting is a combination of surface and suspended fluorescent or incandescent fixtures. Observed light fixtures appeared to be, and were reported to be, in good overall condition.

Interior Finishes

Observed building finishes and furniture, fixtures and equipment (FF&E) appeared to be in good condition. Based on their estimated remaining useful life (RUL), wall painting, replacement of carpet and vinyl flooring will be required during the 10-year evaluation period. Areas of hardwood floor will need to be sanded and refinished. Kitchen appliances were presented in good condition with no significant deficiencies. Replacement of equipment will be required during the evaluation period. Common public restrooms look in good condition with the exception of missing insulated wrap drain pipes below lavatory and alarm horn lights. This work can be part of routine maintenance.

Landscaping and Irrigation

Trimming is recommended for some trees to avoid foliage contact with the building. Based on the limited scope and cost, this work should be conducted as part of routine maintenance.

Parking 197

Proper signage indicating accessible parking spaces for cars and vans are not provided and no % an-accessible+parking spaces are designated but two can be striped as such.

Other Site Amenities

The gazebo is in generally good condition, but is showing signs of deterioration, lack of maintenance and age. Consideration should be given to replacing the gazebo within the 10-year evaluation term. Also, the gazebo is not provided with an accessible ramp. An opinion of cost for this work is noted in Section 9.0.

Attachment 2

Historic Resource Evaluation Summary

ATTACHMENT 2 HISTORIC RESOURCE EVALUATION SUMMARY

Both the National Register and California Register have four basic criteria under which a property may be considered eligible for listing. It can be found significant under one or more of the following criteria:

- *Criterion A/1 (Events)*: Properties associated with events that have made a significant contribution to the broad patterns of our history;
- *Criterion B/2 (Person):* Properties associated with the lives of persons significant in our past;
- *Criterion C/3 (Architecture):* Properties that embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant distinguishable entity whose components lack individual distinction; and
- *Criterion D/4 (Information Potential):* Properties that have yielded, or may be likely to yield, information important in prehistory or history.

Although the Community Center building is the work of a notable local architect and engineer, Louis N. Crawford, and originally a good example of Mediterranean Revival architecture, alterations to the building have removed key features (such as the original red tile roofing and wooden windows on the west and east sides) that have impacted its ability to meet Criterion C/3 (architecture). Nonetheless, the building has sufficient integrity under Criterion A/1 to be eligible for the National Register and California Register.

The Community Center could potentially regain its eligibility under Criterion C/3 if its missing, or altered features, particularly the red-tile roof, were restored per the Secretary of Interioros (SOIos) *Standards for the Treatment of Historic Properties*. However, restoration of the missing features is not required, as the building has sufficient integrity to convey its significance as the Goleta Union School under Criterion A/1. The essential physical features that enable the building to convey its historic integrity and should be preserved include:

- **Character-defining features**, which are those elements or architectural components that establish the visual character of the property; and
- **Significant spaces,** which are rooms or spaces that are important to a property because of their size, height, proportion, configuration, and function.

Pages 6 and 7 of Page & Turnbullop Potential Impact Study include an extensive list and detailed descriptions of the Community Centerop character-defining features and significant spaces.

The SOI's Standards for the Treatment of Historic Properties are % series of concepts about maintaining, repairing, and replacing historic materials, as well as designing new additions or making alterations,+that promote best practices to help protect historic and

cultural resources. They provide a framework for making decisions about work or changes to a historic property.

Under CEQA, projects that comply with the SOI Standards are presumed to have a less than significant adverse impact to historic resources. Conversely, a project would have a significant impact on historic resources if it would result in a substantial adverse change in the significance of a historic resource. A substantial adverse change in significance includes, but is not limited to:

- Demolition of a significant resource;
- Conversion, rehabilitation, or alteration of a significant resource which does not conform to the SOI Standards and SOI Guidelines; or
- Construction that reduces the integrity or significance of important resources on the site or in the vicinity.

Alternatively, if SOI Standards-compliance cannot be established, projects that retain the historic resources eligibility for at least the California Register may also avoid significant adverse impacts to historic resources. This evaluation is done on a case-by-case basis and depends on the historic resource, and how much a proposed project will impact its historic character.

The SOI Standards offer four approaches to the treatment of historic properties: Preservation, Rehabilitation, Restoration, and Reconstruction. Rehabilitation is defined as the act or process of making possible a compatible use for a property through repair, alterations, and additions while preserving those portions or features which convey its historical, cultural, or architectural values. The standards for rehabilitation are too many to list here (see page 12 of the report).

The SOI Standards are supplemented by the *Guidelines for Treatment of Historic Properties* (SOI Guidelines) that offer general design and technical recommendations in applying the SOI Standards to a specific property.

California Historic Building Code

Since the Community Center has been determined eligible for the National Register and California Register, it qualifies to take advantage of the California Historical Building Code (CHBC), Title 24, Part 8 of the California Code of Regulations. The CHBC is intended to provide solutions for the preservation of qualified historical buildings or properties, to promote sustainability, to provide access for persons with disabilities, to provide a cost-effective approach to preservation, and to provide for reasonable safety of the occupants or users. Rather than strict compliance with current codes, the CHBC requires the enforcing agency to accept alternative provisions that provide a reasonable level of safety to occupants.

Attachment 3

Binder of Special Studies

Attachment 3A

Binder of Special Studies

Air/Water Quality Report

Ms. Claudia Dato, Senior Project Manager **City of Goleta** 130 Cremona Drive, Suite B Goleta, CA 93117

Subject: Air and Water Quality Testing Goleta Valley Community Center Head Start Program and Rainbow School 5679 Hollister Avenue Goleta, CA 93117 FCG Project Code: City of Goleta-01

Dear Ms. Dato:

FCG Environmental (FCG) recently conducted air and water quality testing activities at the Goleta Valley Community Center campus. FCG Staff conducted field sampling services at the site on June 30, 2016. This investigation was conducted to assess the various classrooms and buildings at the subject site for potential air (mold/fungus, asbestos) and water quality issues. This report documents the findings of our inspection.

1.0 BACKGROUND & SCOPE OF WORK

<u>Background</u>: The subject site is the Goleta Valley Community Center, which is a former school campus located on Hollister Avenue in downtown Goleta. The campus includes several buildings that are currently used for a variety of community services, including adult education, recreation, child care and private school instruction. The following is a summary of buildings inspected as part of this assessment:

- <u>Building A:</u> Main Community Center Building, includes the main auditorium, dining room, kitchen and various classrooms, meeting rooms and office areas.
- <u>Building B:</u> Classroom building occupied by Head Start Program, St. Terese Classical Academy and K-Long Fitness.
- <u>Building C:</u> Classroom building occupied by Rainbow School.
- <u>Building C Annex</u>: Portable classrooms (3) also occupied by Rainbow School.

FCG was asked to conduct air and water sampling assessment within representative areas of the structures to assess for potential mold and/or moisture issues, and air and water quality.

<u>Scope of Services</u>: FCG conducted the following services to determine the potential for air and water quality issues at the site:

• *Water Sampling Assessment:* Our assessment included the collection of water samples from representative rooms and common areas within each building section to document potential metals contamination from piping systems, along

GVCC – 5679 Hollister Avenue Goleta, CA 93117

with general water quality conditions from the main supply inlet at the time of our assessment. All water samples were forwarded for analysis to CAPCO Analytical, a state-certified laboratory located in Ventura, California.

- Mold & Moisture Sampling Assessment: Our assessment included a brief inspection of representative classrooms and areas throughout each building and classroom to check for signs mold growth, obvious water damage or elevated moisture conditions. Our assessment was limited primarily to the collection of air samples from representative areas within each building to document air quality conditions at the time of our assessment. At least one surface sample was taken from an area of suspected mold growth. Limited field testing using hand held moisture meter equipment was conducted in areas of suspected water intrusion. All microbial air and surface samples were forwarded for analysis to Natural Link Mold Laboratory, a qualified microbiology laboratory located in Reno, Nevada.
- Asbestos Air Sampling Assessment: An asbestos survey was originally completed in 1990 as part of the City's Asbestos Management Plan. Asbestos containing materials were limited primarily to asbestos flooring materials (vinyl tiles, mastics, vinyl sheet flooring), with some limited areas of friable duct insulation or duct wrap noted. We did not perform a survey of the various buildings to confirm if these materials have been abated. Our assessment was limited to the collection of air samples from representative areas within each building to document airborne fiber counts for possible exposure issues. All asbestos air samples were forwarded for analysis to Forensic Analytical Laboratory, a qualified asbestos laboratory located in Rancho Dominguez, California.
- *IAQ Parameters:* FCG used field instrumentation to collect indoor air quality readings, including temperature, relative humidity, carbon monoxide, carbon dioxide, volatile organics, hydrogen sulfide and oxygen levels. Levels were recorded in each individual room or area inspected.
- *Data Evaluation:* All field observations and analytical results have been evaluated and recommendations for remedial action have been included in this report.

2.0 WATER QUALITY TESTING

Water samples were collected from each building within the Community Center campus, with emphasis on sources of drinking water sources such as drinking fountains, sinks, etc. taken from individual rooms and common areas. Laboratory analysis was conducted for lead and other heavy metals content due to the potential for leaching from lead solder joints and older piping systems. The main water supply was analyzed for a variety of general drinking water standards, including: general minerals, disinfectant by-products, coliform bacteria, organic compound and heavy metals.

Laboratory Analysis: Water samples were collected from various drinking water sources and analyzed for heavy metals, including lead, zinc, copper and arsenic to determine possible contamination of water supply lines from leaching of metals or erosion of solder joints, etc. In addition to this sampling, collected samples from the main water supply inlet of general minerals, coliform bacteria, organic compounds, disinfectant by-products and heavy metals for general water quality testing.

Table 2.1 - Drinking Water Sources – Metals Analysis					
Sample Location	Lead (ug/L)	Copper (ug/L)	Arsenic (ug/L)	Zinc (ug/L)	
GVCC – Office Sink	2.0	270	BQL	89	
GVCC – Kitchen Sink	1.1	78	BQL	29	
GVCC – Women's RR Sink	BQL	38	1.1	78	
GVCC – Men's RR Sink	0.8	59	BQL	41	
GVCC – Drinking Fountain	0.7	520	BQL	81	
GVCC – Hose Bib	4.3	120	BQL	414	
Building B – Room 9A/PD	7.1	11	BQL	660	
Building B – Drinking Fountain 9A	3.1	8.9	BQL	1,200	
Building B – 10B Sink	3.2	9.0	BQL	766	
Building B – 11A Bathroom Sink	BQL	77	BQL	22	
Building B – St. Teresa 14A Sink	1.5	650	BQL	350	
Building C – RR Sink Outside	9.0	47	1.0	1,040	
Building C – Fountain Room 10	1.0	59	BQL	68	
Building C – Room 10 Sink Inside	8.0	59	BQL	170	
Building C – Room 11 Sink	1.5	160	BQL	80	
Building C – Room 12 Ext. DF	1.4	76	BQL	45	
Building C – Room 13 Ext. DF	0.9	260	BQL	86	
Building C – Room 13 DF	15	570	BQL	430	
Building C – Room 12 DF	12	150	BQL	240	
Building C Annex – Room 6 Sink	0.9	130	BQL	170	
Building C Annex – Room 7 Sink	0.8	48	BQL	28	
Building C Annex – Room 8 Sink	1.0	45	BQL	18	
CA Drinking Water Standard	15	1,300	10	5,000	
All data reported in microgra BQL = Below Quantification				ivalent.	

Matala Analysi 24 Drinking Weter C

GVCC – 5679 Hollister Avenue Goleta, CA 93117

Sample Location	Lead	Copper	Arsenic	Zinc	
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
Bold listing indicates concentration at or above drinking water standard					

Drinking Water Sampling – Main Supply Inlet: FCG staff sampled the main water supply coming into the campus. The following tables provide a summary of water quality analytical results from our on-site sampling:

Compound	Result (ug/L)	MCL/CA Standard	Comments
Aluminum	BQL	50-200*	Secondary MCL
Antimony	BQL	6	
Arsenic	1.1	10	
Barium	43	2000	
Beryllium	BQL	4	
Cadmium	BQL	5	
Chromium	BQL	100	
Copper	BQL	1.3	0.3 MCLG/PHG
Lead	BQL	15 (TT)	0.2 MCLG/PHG
Mercury	BQL	2	
Nickel	2.0	100	
Selenium	6.4	50	
Silver	BQL	100	
Thallium	BQL	2	
Vanadium	1.3		Not regulated, monitored by GWD (3.6 in 2014)
Other metals (Copper, M	agnesium, Zinc, etc.) analyze	d as part of General Minera	· · · · · ·

Table 2.2: Main Water Supply - Inorganic Metals Analysis

Other metals (Copper, Magnesium, Zinc, etc.) analyzed as part of General Minerals MCL Goals

Table 2.3: Main Water Supply -General Minerals Analysis

Table 2.0. Main Water Ouppry General Minerals Anarysis					
Compound	Result (mg/L)	CA Standard (mg/L)	Comments		
Alkalinity	295	1000 (secondary MCL)	Not regulated. Monitored by GWD (20-500 in 2014)		
Bicarbonate	295		Not regulated. Monitored by GWD (190-430 in 2014)		
Carbonate	BQL				
Hydroxide	BQL				
Total Hardness	480		Not regulated, monitored by GWD (ND-0.52 in 2014)		
Chloride	55	500 (secondary MCL)	Monitored by GWD (20-500 in 2014)		
Fluoride	0.58	2.0	1.0 PHG/MCLG, monitored by GWD (0.26-0.55 in 2014)		
Nitrate (as N)	1.1	10			
Sulfate	240	500 (secondary MCL)	Monitored by GWD (100-300 in 2014)		
Total Dissolved Solids (TDS)	800	1000 (secondary MCL)	Monitored by GWD (600-2000 in 2014)		
MBAS Surfactants	BQL		Not regulated. Testing for soaps or foaming agents.		
Boron	0.10		Not regulated. Not monitored by		

GVCC – 5679 Hollister Avenue Goleta, CA 93117

Compound	Result (mg/L)	CA Standard (mg/L)	Comments
			GWD.
Calcium	120		
Copper	BQL	1.3	
Iron	BQL	300 (secondary MCL)	Monitored by GWD (ND-1000 in 2014)
Magnesium	31		Not regulated, monitored by GWD (33-46 in 2014)
Manganese	BQL	50 (secondary MCL)	
Potassium	1.8		Not regulated, monitored by GWD (1.6 – 4.5 in 2014)
Sodium	62		Not regulated, monitored by GWD (42-110 in 2014)
Zinc	BQL		
MCLs and Secondary MCLs p	er current CA Code p	er Title 22 for drinking water.	

Goleta Water District (GWD) monitoring report dated 2015 (from 2014 sampling event) per website (see attached)

Table 2.4: Volatile Organic Compounds (VOCs) by EPA 524.2

Result (ug/L)	MCL or TT (ug/L)	Comments
9.2		Not regulated, monitored by GWD (ND-0.52 in 2014)
4.0		
5.7		
12		
31	80	Monitored by GWD (9-70, 60 average in 2014)
	(ug/L) 9.2 4.0 5.7 12	(ug/L) (ug/L) 9.2 4.0 5.7 12

Triholomethanes are a by-product of disinfection treatment of water systems and are commonly found.

Table 2.5: Halogenated Acetic Acids (HAA5) by EPA 552.3

Compound	Result (ug/L)	MCL or TT (ug/L)	
Dibromoacetic acid	2.8		
Dichloroacetic acid	ND		
Monobromoacetic acid	ND		
Monochloroacetic acid	ND		
Trichloroacetic acid	1.8		
Total HAA's	5.3	60	Monitored by GWD (ND- 20, 20 average in 2014)

Table 2.6: Other Water Quality Parameters

Additional Testing Results						
Item	Result	MCL or TT	Comments			
рН	7.2					
Specific Conductivity	1175 uS/cm*	1600*	(secondary MCL)			
Total Coliform Absent						
E. Coli Bacteria Absent						
Gross Alpha Particles 2.27 pCi/L**						
*Specific Conductivity measured in micro-Siemens per centimeter (μS/cm) **Gross Alpha measured in picoCuries per liter (pCi/L)						

<u>Summary of Water Quality Analysis:</u> Based on our evaluation of drinking water sources and main supply inlet water, we conclude the following:

- The drinking water sources within the various buildings and classrooms were tested for lead, copper, arsenic and zinc. These metals can leach into the water supply from soldered joints, corrosion and erosion within plumbing lines and systems. Only one sample showed lead concentrations at or above the recommended action level of 15 micrograms per liter (or parts per billion) which was collected from a drinking water fountain located at Building C, Room 13.
- Lead and copper are regulated by a treatment technique that requires systems to control the corrosiveness of their water. If more than 10% of tap water samples exceed the action level, water systems must take additional steps. For lead, the action level is 0.015 mg/L or 15 ppb.
- The general water quality analysis revealed that the main water supply feeding the campus was within the various parameters required for drinking water systems. We have attached the 2015 Water Quality Report provided by the Goleta Water District for your review.

3.0 Indoor Air Quality (IAQ) Testing:

FCG monitored general indoor air quality through random grab sampling using a field instrument specially designed to read temperature (°F), relative humidity (RH %), carbon monoxide (CO) and carbon dioxide (CO₂). The IAQ-Calc Indoor Air Quality Meter (TSI Model 8762) was used to take random samples during our site inspection. The following is a summary of findings from this testing. It should be noted that the ASHRAE standard is a recommended level for comfort purposes only and is not definitive.

Location	Temp (°F)	Relative Humidity (%)	Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	VOCs (methane)	O ₂	H₂S
			tside Backgr				
Main Courtyard	70.0	58.2	0.0	343	0	20.9	0
	•	Main	Community	Center	•		
Room 8	70.5	63.3	0.0	396	0	20.9	0
Room 7	74.8	56.1	0.0	383	0	20.9	0
Room 6	NA		0.0		0	20.9	0
Office	73.9	59.2	0.0	396	0	20.9	0
Dining Hall	75.9	55.6	0.0	399	0	20.9	0
Room 1	73.5	54.4	0.0	432	0	20.9	0
Corridor	73.6	52.5	0.0	364	0	20.9	0
Room 2	74.3	56.1	0.0	600	0	20.9	0
Room 4	74.8	54.3	0.0	493	0	20.9	0
Auditorium	74.8	55.6	0.0	426	0	20.9	0
Office	75.6	54.6	0.0	404	0	20.9	0
Room 5	74.5	55.2	0.0	463	0	20.9	0
Room 6	75.0	57.4	0.0	920	0	20.9	0
Room 7	74.8	61.4	0.0	1260	0	20.9	0
Room 8	74.1	56.7	0.0	674	0	20.9	0

Table 3:	Indoor	Air	Quality	Parameters
----------	--------	-----	---------	------------

GVCC – 5679 Hollister Avenue Goleta, CA 93117

Location	Temp (°F)	Relative Humidity (%)	Carbon Monoxide (ppm)	Carbon Dioxide (ppm)	VOCs (methane)	O ₂	H₂S
			Building B	}			
Room 14A	73.4	49.3	0.0	411	0	20.9	0
Office	73.8	55.1	0.0	473	0	20.9	0
Room 9A	72.9	49.0	0.0	1071	0	20.9	0
	Building C						
Room 10	78.5	47.2	0.0	406	0	20.9	0
Room 13	76.9	47.0	0.0	511	0	20.9	0
	Building C – Annex						
Room 6	78.4	44.2	0.0	381	0	20.9	0
Room 7	76.6	49.4	0.0	499	0	20.9	0
Room 8	75.1	50.8	0.0	897	0	20.9	0
ASHRAE Standards*	68 - 74.5	30 - 65	<9.0	Background +700 (1,027)	-	19.5 – 23.5%	-

Temperature: During our inspection on July 1, 2016, the outdoor temperature was noted at 70.0°F. Indoor temperatures ranged from $70.5^{\circ}F - 77.9^{\circ}F$. According to the American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 55-1992, temperature should be maintained between 73 to 79°F in summer months and 68 to 74.5°F in winter months. The temperature range indoors appears to be within acceptable range.

Conclusion: Temperature was within the acceptable range recommended by ASHRAE standards.

Relative Humidity (RH%): During our inspection, relative humidity (RH) outdoors was 58.2%, with indoor RH ranging from 47.2% to 63.3%. ASHRAE standards recommend maintaining RH at a range from 30 to 65%. Our readings were within the recommended levels. It should be noted that the recommended levels are primarily for comfort purposes, as low humidity may result in dryness of the skin, sinuses and respiratory tract, while elevated humidity may lead to condensation and microbial growth within HVAC ducting and building surfaces. It is important to note that weather conditions will directly affect humidity levels, particularly during periods of rain or heavy fog.

Conclusion: Relative Humidity was within the acceptable range according to ASHRAE standard 55-1992.

Carbon Monoxide (CO): Carbon monoxide is a colorless, odorless, poisonous gas which is a by-product of incomplete combustion. Typical sources of CO within a building may be related to exhausts from combustion equipment (heaters, gas-fired burners, etc.) or vehicle emissions from nearby roads or parking areas. During our assessment, CO readings were 0.0 ppm within all the areas tested, with an outdoor reading of 0.0 ppm. The EPA's recommended level over an 8-hour TWA (time-weighted average) is 9 ppm. The OSHA permissible exposure level is 50 ppm. All CO readings were well within the acceptable range. No indoor sources of combustion were noted.

Conclusion: Carbon monoxide gases were not detected during our assessment.

Carbon Dioxide (CO₂): Carbon dioxide levels are often an indicator of proper ventilation. CO_2 is a normal byproduct of respiration, combustion and other processes. Without proper ventilation and adequate fresh air to replenish the occupied spaces, CO_2 levels will typically rise. It is common for CO_2 levels to be higher indoors, particularly in

Goleta, CA 93117

buildings with several occupants in a limited space. The ASHRAE standard recommends no more than 700 ppm CO_2 over the outdoor ambient levels, which are typically in the 300-400 ppm range. Indoor levels should typically be maintained under 1,000 ppm, but rarely present a significant health hazard even at levels of 10,000 ppm and greater. During our inspection, the outdoor CO_2 reading was 343 ppm. Indoor CO_2 readings from ranged from 364 ppm to 1260 ppm. Indoor levels were within the recommended ASHRAE standard of 700 ppm above the background/outdoor concentration, with the exception of Building B Room 7, which was 717 ppm above the outside level. This room had a meeting prior to our inspection which may have been the source of elevated readings.

Conclusion: CO_2 levels were found to be within the ASHRAE standard recommendation of no readings greater than 700 ppm above the ambient, outdoor level. Only one room had a slightly elevated reading, otherwise no concerns were noted.

Volatile Organic Compounds (VOCs): FCG staff used field instrumentation (RAE Systems MultiRAE) to screen for volatile organic compounds. The MultiRAE is an advanced portable multi-threat chemical detector and gas monitoring instrument. The instrument was calibrated to methane gas in order to detect possible natural gas, vapors or other volatile chemicals or flammable compounds.

Conclusion: None of the areas inspected showed evidence of detectable volatile compounds or methane gas.

Oxygen (O_2): The same field instrument used for screening volatile compounds was used to monitor oxygen levels throughout the different buildings and classrooms. All oxygen levels were within the normal, ambient range at roughly 21% (20.9%). Only if oxygen levels were found below 19.5% or above 23.5% would a potential health concern be presented.

Conclusion: All oxygen levels were within the normal, ambient range.

Hydrogen Sulfide (H $_2$ *S):* Hydrogen sulfide gas is often discovered where bacterial growth is present, primarily from the decay of organic material. We found no H2S readings in any of the areas tested.

Conclusion: No detectable hydrogen sulfide was found during our inspection.

4.0 MOLD & MOISTURE ASSESSMENT

FCG staff conducted limited inspection of each building to determine obvious concerns related to potential mold growth or moisture conductions. In addition to our visual inspection, FCG collected air samples from representative areas within each building to document airborne fungal spore counts. This testing was conducted along with outdoor sampling for comparison purposes.

<u>Air Sampling for Microbial Contamination</u>: FCG collected a total of 31 non-viable air samples for laboratory analysis. Samples were analyzed by Natural Link Mold Lab Inc. of Reno, Nevada, an AIHA Laboratory with EMPAT certification (#162969). Sample collection was conducted according to standard sampling methodologies used in indoor air quality assessments for microbial investigations. This included the use of a specially designed spore trap cassette (Allergenco-D) connected to a portable vacuum pump

(Zefon BioPump[™]) which is calibrated to 15 liters per minute. Samples are collected over a period of 5 minutes for a total sample volume of 75 liters. The cassette features an induction slit over a small glass slide which is coated with a sterile adhesive. The cassette acts as a spore trap device which traps the airborne mold spores as they are pulled into the cassette by the vacuum pump. Each collected sample is sealed, labeled with a unique identification number and forwarded to a qualified laboratory for analysis. Each sample is analyzed by direct microscopic examination by a trained microbiologist. This is a non-viable method where the analyst identifies various spore types to genus level.

The methods used for data interpretation are consistent with published industry documents including: <u>Bioaerosols: Assessment and Control</u>, published by the American Conference of Governmental Industrial Hygienist (ACGIH) 1999; and <u>Mold Sampling and Assessment</u>; Indoor Environmental Standard Organization (IESO), 2002. These standards are used in conjunction with our professional experience in reviewing and evaluating analytical data. The data is evaluated to review total spore counts and individual mold types to determine the hierarchy of mold species found. Ideally, indoor air spore counts should be comparable to outdoor, baseline levels with similar hierarchy or distribution of individual species. If indoor counts are significantly higher or show an obvious variation with the outdoor baseline, mold amplification or growth within the interior may be indicated. Air sample data should always be evaluated in conjunction with a visual inspection, moisture readings, surface sampling and other parameters to provide an overall picture of site conditions.

The following table provides a brief summary of the air sample results collected during our assessment. Please refer to the Attachments section at the end of this report for a complete copy of the laboratory analytical data.

Sample ID	Sample	Total Count	Mold Types Detected
Sample ID	Location	(s/m ³)	(s/m ³)
	Building A – Go	leta Valley Comm	unity Center
A-3	Room 3 (Offices)	2,190	Cladosporium – 1,600 Basidiospores – 270 Penicillium/Aspergillus – 200 Ascospores – 67 Alternaria – 40 Ulocladium – 13
A-4	Room 4 (Dance Room)	854	Cladosporium – 600 Ascospores – 67 Basidiospores – 67 Penicillium/Aspergillus – 67 Aureobasidium – 27 2 other mold types @ 13
A-5A	Room 5A	616	Cladosporium – 270 Basidiospores – 200 Ascospores – 67 Penicillium/Aspergillus – 53 2 other mold types @ 13
A-5B	Room 5B (Audubon)	734	Cladosporium – 470 Ascospores – 130 Basidiospores – 67 Penicillium/Aspergillus – 67

Table 1: Non-Viable Air Sample Results

Air and Water Quality Testing Report GVCC – 5679 Hollister Avenue

Goleta, CA 93117

Sample ID	Sample Location	Total Count (s/m ³)	Mold Types Detected (s/m³)
			Basidiospores – 80
A-6	Room 6	173	Cladosporium – 80
			Epicoccum – 13
			Cladosporium – 200
A-7	Room 7	240	Basidiospores – 27
		_	Botrytis – 13
			Cladosporium – 930
			Basidiospores – 270
A-8	Room 8	1,440	Ascospores – 130
			Penicillium/Aspergillus – 110
			Cladosporium – 1,000
A-Kitchen	Kitchen Area	2,467	Ascospores – 730
		, -	Basidiospores – 530
			5 other mold types $@ \le 27$
			Cladosporium – 1,100
			Smuts/Myxomycetes – 93
A-Office	GVCC Offices	1,434	Alternaria – 67
A-Onice	GVCC Onices	1,434	Ascospores – 67
			Basidiospores – 67
			Aureobasidium – 40
			Cladosporium – 800
			Ascospores – 200
			Basidiospores – 67
A-Dining	GVCC Dining Room	1,187	Penicillium/Aspergillus – 67
Ū	C C		
			Smuts/Myxomycetes – 27
			2 other mold types @ 13
			Cladosporium – 870
A-			Basidiospores – 270
Auditorium	GVCC Auditorium	1,563	Penicillium/Aspergillus – 210
Auditorium			Ascospores – 200
			Smuts/Myxomycetes – 13
	Building	B – Headstart Pro	ogram
			Cladosporium – 730
			Basidiospores – 470
	Headstart		Ascospores – 200
B-Office		1,641	Penicillium/Aspergillus – 67
D Ollioo	Main Office	1,011	Smuts/Myxomycetes – 67
			Alternaria – 53
			2 other mold types $@ \leq 27$
			Cladosporium – 2,200
	Room 9		Basidiospores – 730
B-9A-PD		3,193	Ascospores – 130
	Classroom	0,100	Penicillium/Aspergillus – 67
			Alternaria – 53
			4 other mold types @ ≤ 27
			Cladosporium – 1,300
P 104	Room 10A	1 5 2 7	Basidiospores – 130
B-10A	Support Services	1,537	Ascospores – 67
			2 other mold types $@ \leq 27$
			Cladosporium – 670
	Room 10B		Penicillium/Aspergillus – 560
	Room 10B		Rasidinenorae - 220
B-10B	Room 10B	1,747	Basidiospores – 330 Ascospores – 67
B-10B	Room 10B EHS Classroom	1,747	Ascospores – 67
B-10B		1,747	Ascospores – 67 Alternaria – 53
B-10B	EHS Classroom	1,747	Ascospores – 67 Alternaria – 53 3 other mold types @ ≤ 27
B-10B B-11A-1A		1,747	Ascospores – 67 Alternaria – 53

Air and Water Quality Testing Report GVCC – 5679 Hollister Avenue Goleta, CA 93117

Sample ID	Sample Location	Total Count (s/m ³)	Mold Types Detected (s/m³)
	Location	(3/11)	Basidiospores – 200
			Ascospores – 130
			Alternaria – 67
			4 other mold types $@ \le 27$
			Cladosporium – 730
			Basidiospores – 470
5 ((5	Goleta II	. =	Ascospores – 130
B-11B	Center Office	1,733	Penicillium/Aspergillus – 67
			Smuts/Myxomycetes – 40
			7 other mold types $@ \leq 27$
			Cladosporium – 800
			Basidiospores – 400
B-12A-1B	Room 12A-1B	1 404	Ascospores – 67
D-12A-1D	Classroom	1,494	Penicillium/Aspergillus – 67
			Smuts/Myxomycetes – 53
			5 other mold types $@ \le 27$
	Room 14B		Cladosporium – 670
B-14B	Health Services	852	Basidiospores – 130
			4 other mold types @ 13
	Building	g C – Rainbow Sc	
			Cladosporium – 1,300
			Ascospores – 290
			Basidiospores – 130
C-6	Classroom 6	2,039	Alternaria – 80
00		2,000	Penicillium/Aspergillus – 67
			Aureobasidium – 53
			Smuts/Myxomycetes – 53
			4 other mold types $@ \le 27$
			Cladosporium – 1,100
			Ascospores – 330 Penicillium/Aspergillus – 130
C-7	Classroom 7	1 0 2 0	Basidiospores – 67
0-7		1,838	Alternaria – 53
			Aureobasidium – 40
			8 other mold types $@ \le 27$
			Cladosporium – 1,300
			Aureobasidium – 130
			Basidiospores – 130
C-8	Classroom 8	1,891	Penicillium/Aspergillus – 130
00		1,001	Alternaria – 67
			Ascospores – 67
			Smuts/Myxomycetes – 67
	Building C Appay		Cladosporium – 1,600
C-10	Building C Annex	1,759	Ascospores – 67
	Classroom 10	,	5 other mold types $@ \le 27$
			Cladosporium – 1,200
			Basidiospores – 330
			Penicillium/Aspergillus – 200
C 11	C-11 Building C Annex Classroom 11	2 157	Smuts/Myxomycetes – 120
C-11		2,157	Alternaria – 80
			Ascospores – 67
			Rusts – 40
			6 other mold types @ \leq 27
			Cladosporium – 1,500
	-12 Building C Annex Classroom 12	2,282	Ascospores – 200
C-12			Basidiospores – 200
			Penicillium/Aspergillus – 130
			Oidium – 53

GVCC – 5679 Hollister Avenue Goleta, CA 93117

Sample ID	Sample Location	Total Count (s/m ³)	Mold Types Detected (s/m³)
			Smuts/Myxomycetes – 53
			Scopulariopsis – 40
			6 other mold types $@ \leq 27$
			Cladosporium – 670
	Building C Annex		Ascospores – 200
C-13	Classroom 13	1,159	Basidiospores – 130
	Classroom 13		Smuts/Myxomycetes – 67
			6 other mold types $@ \leq 27$
	Outside/Back	ground Reference	
			Cladosporium – 2,200
		3,368	Basidiospores – 470
OS-1	Outside, Background		Penicillium/Aspergillus – 270
00-1	Rear Parking Area	5,500	Ascospores – 200
	C C	č	Smuts/Myxomycetes – 110
			8 other mold types @ ≤ 27
			Cladosporium – 3,800
			Ascospores – 470
			Basidiospores – 270
			Beltrania – 230
OS-2	Outside, Background	5,170	Nigrospora – 93
002	Front of Building A	0,170	Alternaria – 67
			Penicillium/Aspergillus – 67
			Smuts/Myxomycetes – 53
			Unidentified conidia – 53
			3 other mold types $@ \leq 27$
All data report	ed in spores per cubic mete	er (s/m³)	

Air Sample Results Summary:

- All of the non-viable air samples collected from interior classrooms, offices and common areas of the subject site revealed total airborne mold spore concentrations that were within the outdoor background levels detected at the time of the inspection (240 3,193 s/m³ inside vs. 3,368 & 5,170 s/m³ outside).
- Similarly, all of the interior non-viable air samples revealed individual mold spore types that were within the corresponding background levels, or at such low concentrations that they should not pose any significant health risk.
- No concerns regarding airborne mold spore amplification were indicated within the interior areas tested as part of our inspection.

<u>Mold & Moisture Inspection and Surface Sampling</u>: Our inspection included a very brief and limited inspection of site conditions to check for evidence of mold growth, water intrusion, odors or similar concerns. Moisture readings were taken from areas of concern or suspect growth. The following is a summary of our observations:

Building B – Classroom 9A-PD

- This classroom has two sinks located on the west wall near the northwest corner.
- Water damage and suspect mold growth were noted on the wood base shelves and lower walls within both sink cabinets. This is typical of routine leaking from the sink plumbing, water filtration systems or from stored liquids within the cabinet. One surface tape-lift sample was collected from the base shelf in the adult sink (Sample B-9A-PD), with significant growth of *Chaetomium* indicated. See Section 4.0 for details.

- Moisture readings taken from selected areas on the base shelves and side wall of the adult sink cabinet were found to be elevated (>20% on wood scale).
- One air sample was collected from the center of the classroom (Sample B-9A-PD) for documentation purposes, with no air quality concerns noted. See Section 3.0 for details.

<u>Classroom C-8 (Annex)</u>: This is a portable classroom used by the Rainbow School. There was a strong odor in the west side of the classroom near the student restroom. According to staff, the toilet in this room has overflowed numerous times. No obvious mold growth was found and moisture levels were only slightly elevated. One air sample taken from this room showed no obvious concerns or contamination.

<u>GVCC Room 5B</u>: The hallway between Room 5A (conference room) and the Audubon Society office had a musty odor consistent with past roofing leaks or other water intrusion. No visible evidence of mold growth or obvious water damage was noted. The air sample taken from this area was within normal, background levels.

<u>General</u>: Minor areas of water staining were noted, particularly in the kitchen and restroom area, typical of an older building with long-term use of water fixtures (sinks, toilets, etc.). Limited areas of damaged ceiling tiles or stained plaster were noted, indicating past roofing leaks. No other obvious concerns related to mold growth or moisture intrusion were noted in the areas inspected. No elevated moisture readings were found in the limited areas inspected. It should be noted that per the terms of our proposal, our inspection was primarily limited to air sampling only and did not include a thorough visual and physical inspection of all areas and materials.

<u>Surface Sampling</u>: FCG collected one surface tape-lift sample from the sink cabinet in Building B, Room 9A. This was taken from an area of apparent fungal growth during our inspection. The sample was analyzed by direct microscopic examination using non-viable or non-culturable methods. This section provides a summary of laboratory analytical data from the collected sample. Please refer to the attachments to this report for a full copy of the laboratory analytical results.

Sample ID	Sample Location	Mold Growth Observed*						
T-1	Building B Classroom 9A-PD Sink Cabinet Base Shelf	Chaetomium – 5 (Nearly Confluent)						
Mold growth rated on a scale of 1 to 5, with 5 being the most significant.								
Please see the attack	hed lab report for additional information	n.						

Table 2: Non-Viable Surface Sample Results

<u>Surface Sample Results Summary</u>: The surface sample collected from within the sink cabinet (T-1) of Room B-9 indicated nearly confluent growth of *Chaetomium*. Remediation is warranted within the sink cabinet area, based on surface sample results and visual observation.

5.0 ASBESTOS AIR SAMPLING ASSESSMENT

Asbestos air samples were collected from representative areas within all buildings to document the presence/absence of airborne asbestos fibers. A total of 19 air samples were collected using high volume pumps and PCM cassettes equipped with 0.8-micron filters. The total volume for each of the collected air samples ranged from 1,200–1,700 liters. Air samples were submitted to Forensic Analytical Laboratories, a CA certified laboratory located in Rancho Dominquez, CA for analysis by Phase Contrast Microscopy (PCM) methods.

Table 5.1: Asbestos Air Sampling Results									
Sample	Sample Location	Sample Volume	Lab Result						
ID		(Liters)	(f/cc)						
A-1	Building B – Room 12A	1200	0.003						
A-2	Building B – Room 11A	1200	0.008						
A-3	Building B – Room 10B	1200	0.003						
A-4	Building C – Room 13	1200	<0.002						
A-5	Building C – Room 12	1200	<0.002						
A-6	Building C – Room 11	1210	0.003						
A-7	Building C – Room 10	1200	<0.002						
A-8	Bldg. C Annex – Room 6	1220	<0.002						
A-9	Bldg. C Annex – Room 7	1200	0.003						
A-10	Bldg. C Annex – Room 8	1200	0.005						
A-11	Bldg. B – Room 9A	1395	<0.002						
A-12	GVCC – Dining Hall	1200	<0.002						
A-13	GVCC – Auditorium	1200	<0.002						
A-14	GVCC – Room 6	1200	<0.002						
A-15	GVCC – Room 7	1200	<0.002						
A-16	GVCC – Room 8	1200	<0.002						
A-17	GVCC – Room 1	1300	0.006						
A-18	GVCC – Office	1600	<0.002						
A-19	Bldg. B – Room 13B	1700	<0.002						
	OSHA Permissible Exp		0.10						
	EPA's Recommende	ed Clearance Level =	0.01						
Please see	the attached laboratory analytical report fo	r additional information.							

<u>Asbestos Air Sample Results</u>: All of the interior air samples collected from representative areas within each building revealed airborne fiber concentrations which were well below the OSHA Permissible Exposure Limit and the EPA's recommended criteria for abatement projects of 0.01 fibers/cc. A complete copy of the Forensic Analytical Laboratory report is provided in the Attachments section.

6.0 CONCLUSIONS & RECOMMENDATIONS

<u>Conclusions</u>: FCG has completed environmental testing of air and water quality conditions at the Goleta Valley Community Center and the associated classroom buildings. Based on our observations and evaluation of laboratory analytical data, we conclude the following:

Water Quality

- Drinking water sources (sinks, drinking fountains, etc.) within the various buildings and classrooms were tested for lead, copper, arsenic and zinc. These metals can leach into the water supply from soldered joints, corrosion and erosion within plumbing lines and systems. Only one sample showed lead concentrations at or above the recommended action level of 15 micrograms per liter (or parts per billion) which was collected from a drinking water fountain located at Building C in Room 13.
- The general water quality analysis revealed that the main water supply feeding the campus was within the various parameters required for drinking water systems.

Indoor Air Quality Parameters

• FCG used field instrumentation to record various indoor air quality parameters, including: temperature, relative humidity, carbon monoxide, carbon dioxide, volatile organics (methane), oxygen and hydrogen sulfide. All readings were within the acceptable range, with no concerns noted.

Mold & Moisture

- Representative air samples collected from interior classrooms, offices and common areas of the subject site revealed total airborne mold spore concentrations that were within the outdoor background levels detected at the time of the inspection (240 3,193 s/m³ inside vs. 3,368 & 5,170 s/m³ outside).
- The individual mold types detected indoors were within the corresponding background levels found outdoors, or at such low concentrations that they should not pose any concerns to the occupants.
- No concerns regarding airborne mold spore concentrations were indicated within the areas tested on site as part of our assessment.
- Limited areas of visible staining consistent with suspect mold growth or water intrusion. Surface mold growth was confirmed through surface sampling within the sink cabinet of Classroom 9A in Building B. Additional areas of water staining, odors or similar concerns were noted in limited areas of the site.

Asbestos Air Testing

- A total of 19 air samples were taken from representative classrooms, offices and common areas throughout the site buildings. All of the asbestos fiber counts were well below the OSHA Permissible Exposure Limit of 0.1 f/cc and the EPA's recommended clearance level of 0.01 f/cc using Phase Contract Microscopy (PCM) testing methodology.
- A previous asbestos survey was conducted in 1990, with a variety of materials listed, including vinyl flooring, mastics and duct insulation materials. The materials inspected appeared to be in good condition with no concerns noted.

However, it should be noted that we did not conduct reinspection or asbestos bulk sampling to confirm the presence of asbestos containing materials as part of this project.

Recommendations:

- <u>Water Quality</u>: Only one drinking water supply sample was found to contain lead concentrations at the recommended action level of 15 ppb (Drinking fountain within Building C, Room 13). The plumbing lines to this device should be replaced to remove lead soldered joints, or the fountain should be taken out of service until replaced or repaired.
- <u>Mold & Moisture</u>: The areas of identified mold growth or water intrusion should be remediated or further investigated as necessary. This includes the sink cabinet located inside Building B, Classroom 9A. A licensed mold remediation contractor should be retained to conduct repairs as necessary. Additional areas of water intrusion, staining, odors or similar concerns should be investigated further as necessary to ensure optimal site conditions.
- <u>Asbestos:</u> If not already in place, an Asbestos Operations & Maintenance Program should be developed in order to ensure compliance with asbestos regulations and ensure contractors, maintenance personnel or occupants do not disturb asbestos containing materials. An O&M Plan should include an inventory of identified Asbestos Containing Materials (ACM) located on site, with plans and procedures for proper handling, training, warnings and notifications, etc. Please contact FCG for additional information regarding this matter.

Limitations Statement

The data compiled and evaluated as part of this assessment was limited and may not represent all conditions at the subject site. Mold infestation normally occurs within areas hidden from view (i.e. crawlspaces, wall cavities, plumbing chases, etc.), making it difficult to locate and define microbial contamination issues. Air and bulk sampling can provide some guidance, but should not be considered definitive. This assessment reflects the data collected from specific locations tested to identify microbial conditions in those locations and therefore, should not be considered comprehensive or all encompassing. The findings from this report have been based solely upon the subjective evaluation of limited data collected during this assessment. All data collection, findings, conclusions and recommendations presented within this report are based upon limited data using current standard practices accepted within the industry.

The data collected during this assessment and any resulting recommendations shall be used only by the client for the site described in this report. Any use or reliance of this report, including any of its information or recommendations by a third party without the explicit authorization of FCG or the client shall be strictly at the risk of the third party.

Currently there are no federal or state standards for the assessment or abatement of microbiological contaminated sites. No acceptable thresholds or health standards have been implemented for mold exposure. Biological pollutants found at elevated concentrations have the potential to cause impacts to human health. These impacts may be limited to allergic reactions such as nasal congestion, watery eyes, runny nose, sneezing, coughing, itching or similar responses. Other responses may include fatigue, headaches, or more serious health problems such as asthma, viral infections, fevers, various forms of pneumonia, and similar respiratory problems. Responses will differ greatly between individuals depending on a number of factors, such as the sensitivity of the individual to a particular biological pollutant and their pre-existing health conditions. FCG Environmental cannot and will not provide medical advice or opinions as to the associated health problems encountered from exposure to biological pollutants. lf individuals are experiencing symptoms they should consult their personal physician or an appropriate medical care provider.

If you have any questions or concerns regarding the information provided, please do not hesitate to call us at 805.646.1995.

Dana Stestiens

Dana Stephens, Staff Professional Certified Microbial Investigator (ACAC)

Alon Forber

Alan Forbess, Principal Consultant Certified Asbestos Consultant #94-1549 Certified Microbial Consultant (ACAC)

- Attachments: 1 Water Quality Analytical Reports, including GWD 2015 Report
 - 2 Natural Link Laboratory Analytical Report (mold/fungi)
 - 3 Forensic Analytical Lab Report for Asbestos Air Samples
 - 4 FCG Staff Certifications

Attachments

- 1 Water Quality Analytical Results
 - 2 Mold/Fungi Analytical Results
 - 3 Asbestos Air Sample Results
 - **4 FCG Inspector Certifications**

Attachment 1

Water Quality Analytical Results

Prepared for: Forbess Consulting Group Env. 1009 Mercer Avenue Ojai, CA 93023 Attn: Alan Forbess

Report Date: July 13, 2016 Laboratory Number: 161511 Project Name: Goleta Valley Comm. Center-01 Project No: City of Goleta-01 Sampled by: Client

Enclosed are the analysis results for samples received July 1, 2016 with the Chain of Custody document. The samples were received in good condition, at 10°C, and they were identified and assigned the laboratory ID numbers listed below:

SAMPLE DESCRIPTION CAS LAB NUMBER ID GVCC-Office Sink 161511-01 GVCC-Kitchen Sink 161511-02 GVCC-Women's RR Sink 161511-03 GVCC-Men's RR Sink 161511-04 GVCC-Drinking Fountain 161511-05 GVCC-Hose Bib 161511-06 Bldg. B-Room 9A/PD 161511-07 Bldg. B-Drinking Fountain 9A 161511-08 Bldg. B-10B Sink 161511-09 Bldg. B-11A Bathroom Sink 161511-10 Bldg. B-St Teresa 14A Sink 161511-11 Bldg. C-RR Sink outside 161511-12 Bldg. C-Fountain Rm 10 161511-13 Bldg. C-Room 10 Sink inside 161511-14 Bldg. C-Room 11 Sink 161511 - 15Bldg. C-Room 12 161511-16 Bldg. C-Room 12 Ext. DF 161511-17 Bldg. C-Room 13 Ext. DF 161511-18 Bldg. C-Room 13 DF 161511-19 Bldg. C-Room 12 DF 161511-20

Pg. 1 of 2

Analytical Services, Inc.

Environmental and Analytical Services-Since 1994 California State Accredited Laboratory in Accordance with ELAP Certificate # 2332

Prepared for: Forbess Consulting Group Env. 1009 Mercer Avenue Ojai, CA 93023 Attn: Alan Forbess

Report Date: July 13, 2016 Laboratory Number: 161511 Project Name: Goleta Valley Comm. Center-01 Project No: City of Goleta-01 Sampled by: Client

SAMPLE DESCRIPTION

C-Annex Rm 6 Sink C-Annex Rm 7 Sink C-Annex Rm 7 Sink C-Annex Rm 8 Sink CAS LAB NUMBER ID

161511-21 161511-22 161511-23 161511-24

By my signature below, I certify that the results contained in this laboratory report comply with applicable standards for certification by the California Department of Public Health's Environmental Laboratories Accreditation Program (ELAP), both technically and for completeness, and that, based on my inquiry of the person or persons directly responsible for performing the analyses, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

ory Director

If you have any further questions or concerns, please contact me at your convenience. This report consists of 26 pages excluding the cover letter and the Chain of Custody.

This report shall not be reproduced except in full without the written approval of CAS. The test results reported represent only the item being tested and may not represent the entire material from which the sample was taken.

Pg 2 of 2

CERTIFICATE OF ANALYSIS

Client: FCG Environmental CAS LAB NO: 161511 Analyst: ABE					Date Rece	pled: 06/30/16 ived: 07/01/16 trix: Water		
	Ţ	OTAL MET	ALS SU	MMARY				
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED		
CAS Lab#: 161511-01 Sample ID: GVCC-Office Sink								
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16		
Copper	270	∖ug∕L	1	2.0	200.8	07/07/16		
Lead	2.0	ug∕L	1	0.5	200.8	07/07/16		
Zinc	89	ug⁄L	1	3.0	200.8	07/07/16		

- ug/L: Micrograms/Liter(ppb) DF: Dilution Factor BQL: Below Practical Quantitation Limit PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Envi CAS LAB NO: 1615 Analyst: ABE		led: 06/30/16 ved: 07/01/16 rix: Water						
	TC	TAL META	LS SUMM	IARY				
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED		
CAS Lab#: 161511-02 Sample ID: GVCC-Kitchen Sink								
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16		
Copper	78	ug/L	1	2.0	200.8	07/07/16		
Lead	1.1	ug/L	1	0.5	200.8	07/07/16		
Zinc	29	ug/L	1	3.0	200,8	07/07/16		

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Envi CAS LAB NO: 1615 Analyst: ABE)ate Recei	led: 06/30/16 ved: 07/01/16 rix: Water					
	TO	TAL META	LS SUMM	ÍARY		<u> </u>		
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED		
CAS Lab#: 161511-03 Sample ID: GVCC-Women's RR Sink								
Arsenic	1.1	ug∕L	1	1.0	200.8	07/07/16		
Copper	38	ug⁄L	1	2.0	200.8	07/07/16		
Lead	BQL	ug/L	1	0.5	200.8	07/07/16		
Zinc	78	ug⁄L	1	3,0	200.8	07/07/16		

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Envi CAS LAB NO: 1615 Analyst: ABE	Date Samp Date Recei Sample Mat	ved: 07/01/16					
	ТО	TAL META	LS SUMN	ÍARY			
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED	
CAS Lab#: 161511-04 Sample ID: GVCC-Men's RR Sink							
Arsenic	BQL	ug∕L	1	1.0	200.8	07/07/16	
Copper	59	ug/L	1	2.0	200.8	07/07/16	
Lead	0.8	ug⁄L	1	0,5	200.8	07/07/16	
Zinc	41	ug⁄L	1	3.0	200,8	07/07/16	

ug/L: Micrograms/Liter(ppb) DF: Dilution Factor BQL: Below Practical Quantitation Limit PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Envi CAS LAB NO: 1615 Analyst: ABE	-	Date Recei	led: 06/30/16 ved: 07/01/16 rix: Water			
	ТО	TAL META	LS SUMM	IARY		
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab#: 16151 Sample ID: GVCC						
Arsenic	BQL	ug∕L	1	1.0	200.8	07/07/16
Copper	520	ug/L	1	2.0	200.8	07/07/16
Lead	0.7	ug/L	1	0.5	200.8	07/07/16
Zinc	81	ug/L	1	3.0	200.8	07/07/16

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Environmental CAS LAB NO: 161511 Analyst: ABE						led: 06/30/16 ved: 07/01/16 rix: Water		
	TC	TAL META	LS SUMM	IARY				
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED		
CAS Lab#: 161511-06 Sample ID: GVCC-Hose Bib								
Arsenic	BQL	ug⁄L	1	1.0	200.8	07/07/16		
Copper	120	ug/L	1	2.0	200.8	07/07/16		
Lead	4.3	ug/L	1	0.5	200.8	07/07/16		
Zinc	414	ug∕L	1	3.0	200.8	07/07/16		

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env CAS LAB NO: 161 Analyst: ABE		Date Rece	pled: 06/30/16 ived: 07/01/16 trix: Water						
	Т	OTAL MET.	ALS SU	MMARY					
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
CAS Lab#: 161511-07 Sample ID: Bldg. B-Room 9A/PD									
Arsenic	BQL	ug∕L	1	1.0	200.8	07/07/16			
Copper	11	ug/L	1	2.0	200.8	07/07/16			
Lead	7.1	ug⁄L	1	0,5	200.8	07/07/16			
Zinc	660	ug/L	1	3.0	200.8	07/07/16			

ug/L: Micrograms/Liter(ppb) DF: Dilution Factor

- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Environmental CAS LAB NO: 161511 Analyst: ABE					Date Recei	led: 06/30/16 ved: 07/01/16 rix: Water		
	ТО	TAL META	LS SUMM	IARY				
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED		
CAS Lab#: 161511-08 Sample ID: Bldg. B-Drinking Fountain 9A								
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16		
Copper	8.9	ug/L	1	2.0	200,8	07/07/16		
Lead	3,1	ug∕L	1	0.5	200,8	07/07/16		
Zinc	1200	ug∕L	1	3, Q	200.8	07/07/16		

ug/L: Micrograms/Liter(ppb) DF: Dilution Factor

- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Environmental CAS LAB NO: 161511 Analyst: ABE					Date Rece	pled: 06/30/16 ived: 07/01/16 trix: Water			
	T	OTAL MET.	ALS SU	MMARY					
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
CAS Lab#: 161511-09 Sample ID: Bldg. B-10B Sink									
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16			
Copper	9.0	ug/L	1	2.0	200.8	07/07/16			
Lead	3.2	ug∕L	1	0.5	200.8	07/07/16			
Zinc	766	ug/L	1	3.0	200.8	07/07/16			

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env CAS LAB NO: 161 Analyst: ABE		Date Rece	pled: 06/30/16 ived: 07/01/16 trix: Water						
TOTAL METALS SUMMARY									
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
CAS Lab#: 161511-10 Sample ID: Bldg. B-11A Bathroom Sink									
Arsenic	BQL	ug∕L	1	1.0	200.8	07/07/16			
Copper	77	ug⁄L	1	2.0	200.8	07/07/16			
Lead	BQL	ug∕L	1	0.5	200.8	07/07/16			
Zinc	22	ug∕L	1	3.0	200.8	07/07/16			

ug/L: Micrograms/Liter(ppb) DF: Dilution Factor

- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env CAS LAB NO: 161 Analyst: ABE		Date Sampled: 06/30/1 Date Received: 07/01/1 Sample Matrix: Water							
TOTAL METALS SUMMARY									
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
CAS Lab#: 161511-11 Sample ID: Bldg. B-St. Teresa 14A Sink									
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16			
Copper	650	ug∕L	1	2.0	200.8	07/07/16			
Lead	1.5	ug∕L	1	0,5	200.8	07/07/16			
Zinc	350	ug/L	1	3.0	200.8	07/07/16			

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env CAS LAB NO: 161 Analyst: ABE		Date Rece	pled: 06/30/16 ived: 07/01/16 trix: Water			
	T	OTAL MET.	ALS SU	MMARY		
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab#: 1615 Sample ID: Blo		ink outs	ide			
Arsenic	1.0	ug⁄L	1	1.0	200.8	07/07/16
Copper	47	ug∕L	1	2.0	200.8	07/07/16
Lead	9.0	ug∕L	1	0.5	200.8	07/07/16
Zinc	1040	ug∕L	1	3,0	200.8	07/07/16

- ug/L: Micrograms/Liter(ppb) DF: Dilution Factor BQL: Below Practical Quantitation Limit PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env: CAS LAB NO: 1619 Analyst: ABE		Date Sampled: 06/30/1 Date Received: 07/01/1 Sample Matrix: Water				
	T	OTAL MET.	ALS SU	MMARY	·	, <u>, , , , , , , , , , , , , , , , , , </u>
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab#: 1615; Sample ID: Bld	g. C-Foun			1 0	200 9	07/07/16
Arsenic	BQL	ug⁄L	1	1.0	200.8	07/07/16
Copper	59	ug∕L	1	2.0	200.8	07/07/16
Lead	1.0	ug∕L	1	0.5	200.8	07/07/16
Zinc	68	ug/L	1	3.0	200.8	07/07/16

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env: CAS LAB NO: 1619 Analyst: ABE	ironmental 511	Date Sampled: 06/30/1 Date Received: 07/01/1 Sample Matrix: Water							
TOTAL METALS SUMMARY									
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
CAS Lab#: 1615 Sample ID: Bld									
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16			
Copper	59	ug/L	1	2.0	200.8	07/07/16			
Lead	8.0	ug⁄L	1	0.5	200.8	07/07/16			
Zinc	170	ug∕L	1	3.0	200.8	07/07/16			

ug/L: Micrograms/Liter(ppb)

DF: Dilution Factor

•

- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

.

Environmental and Analytical Services-Since 1994 California State Accredited Laboratory in Accordance with ELAP Certificate # 2332

CERTIFICATE OF ANALYSIS

Client: FCG Env CAS LAB NO: 16: Analyst: ABE		Date Sampled: 06/30/16 Date Received: 07/01/16 Sample Matrix: Water							
TOTAL METALS SUMMARY									
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
CAS Lab#: 1619 Sample ID: Blo		11 Sink							
Arsenic	BQL	ug∕L	1	1.0	200.8	07/07/16			
Copper	160	ug∕L	1	2.0	200.8	07/07/16			
Lead	1.5	ug∕L	1	0.5	200.8	07/07/16			
Zinc	80	ug/L	1	3.0	200.8	07/07/16			

- ug/L: Micrograms/Liter(ppb) DF: Dilution Factor BQL: Below Practical Quantitation Limit PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env CAS LAB NO: 161 Analyst: ABE		Date Recei	oled: 06/30/16 ived: 07/01/16 trix: Water						
TOTAL METALS SUMMARY									
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
CAS Lab#: 161511-16 Sample ID: Bldg. C-Room 12									
Arsenic	BQL	ug⁄L	1	1.0	200.8	07/07/16			
Copper	150	ug/L	1	2.0	200.8	07/07/16			
Lead	1.0	ug/L	1	0.5	200.8	07/07/16			
Zinc	120	ug/L	1	3,0	200.8	07/07/16			

ug/L: Micrograms/Liter(ppb) DF: Dilution Factor

- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

	CERTIFICATE OF ANALYSIS									
Client: FCG Envi CAS LAB NO: 1615 Analyst: ABE	Date Sampled: 06/30/1 Date Received: 07/01/1 Sample Matrix: Water									
TOTAL METALS SUMMARY										
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED				
CAS Lab#: 16151 Sample ID: Bldg		12 Ext.	DF							
Arsenic	BQL	ug∕L	1	1.0	200.8	07/07/16				
Copper	76	ug/L	1	2.0	200.8	07/07/16				
Lead	1.4	ug∕L	1	0.5	200.8	07/07/16				
Zinc	45	ug∕L	1	3.0	200.8	07/07/16				

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Envi CAS LAB NO: 1615 Analyst: ABE	I	ate Recei	led: 06/30/16 ved: 07/01/16 rix: Water						
TOTAL METALS SUMMARY									
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
	CAS Lab#: 161511-18 Sample ID: Bldg. C-Room 13 Ext. DF								
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16			
Copper	260	ug/L	1	2.0	200.8	07/07/16			
Lead	0.9	ug/L	1	0,5	200.8	07/07/16			
Zinc	86	ug⁄L	1	3.0	200.8	07/07/16			

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env CAS LAB NO: 161 Analyst: ABE		Date Rece	pled: 06/30/16 ived: 07/01/16 trix: Water						
	T	OTAL MET.	ALS SU	MMARY					
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
	CAS Lab#: 161511-19 Sample ID: Bldg. C-Room 13 DF								
Arsenic	BQL	ug∕L	1	1.0	200.8	07/07/16			
Copper	570	ug/L	1	2.0	200.8	07/07/16			
Lead	15	ug∕L	1	0.5	200.8	07/07/16			
Zinc	430	ug/L	1	3.0	200.8	07/07/16			

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Envi CAS LAB NO: 1615 Analyst: ABE		Date Sampled: 06/30/16 Date Received: 07/01/16 Sample Matrix: Water							
TOTAL METALS SUMMARY									
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED			
	CAS Lab#: 161511-20 Sample ID: Bldg. C-Room 12 DF								
Arsenic	BQL	ug⁄L	1	1.0	200.8	07/07/16			
Copper	150	ug⁄L	1	2.0	200.8	07/07/16			
Lead	1.2	ug/L	1	0.5	200.8	07/07/16			
Zinc	240	ug⁄L	1	3.0	200.8	07/07/16			

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG En CAS LAB NO: 16 Analyst: ABE		Date Sampled: 06/30/16 Date Received: 07/01/16 Sample Matrix: Water				
·	Т	OTAL MET	ALS SU	MMARY		
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab#: 161 Sample ID: C		Sink				
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16
Copper	130	ug/L	1	2.0	200.8	07/07/16
Lead	0.9	ug/L	1	0.5	200.8	07/07/16
Zinc	170	ug∕L	1	3.0	200.8	07/07/16

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env. CAS LAB NO: 161 Analyst: ABE	ironmental 511				Date Rece	pled: 06/30/16 ived: 07/01/16 trix: Water
	T	OTAL MET.	ALS SU	MMARY		
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab#: 1615 Sample ID: C-A		Sink				
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16
Copper	48	ug∕L	1	2.0	200.8	07/07/16
Lead	0.8	ug/L	1	0.5	200.8	07/07/16
Zinc	28	ug/L	1	3.0	200.8	07/07/16

ug/L: Micrograms/Liter(ppb) DF: Dilution Factor

- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG En CAS LAB NO: 16 Analyst: ABE					Date Rece	pled: 06/30/16 ived: 07/01/16 trix: Water
	T	OTAL MET	ALS SU	MMARY		waanay , ,
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab#: 161 Sample ID: C-		Sink				
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16
Copper	240	ug/L	1.	2.0	200.8	07/07/16
Lead	1.4	ug/L	1	0.5	200.8	07/07/16
Zinc	44	ug∕L	1	3.0	200.8	07/07/16

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

CERTIFICATE OF ANALYSIS

Client: FCG Env CAS LAB NO: 161 Analyst: ABE					Date Rece	pled: 06/30/16 ived: 07/01/16 trix: Water
	T	OTAL MET	ALS SU	MMARY		
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab#: 1615 Sample ID: C-A		Sink				
Arsenic	BQL	ug∕L	1	1.0	200.8	07/07/16
Copper	45	ug∕L	1	2.0	200.8	07/07/16
Lead	1.0	ug∕L	1	0.5	200.8	07/07/16
Zinc	18	ug/L	1	3.0	200.8	07/07/16

- ug/L: Micrograms/Liter(ppb) DF: Dilution Factor BQL: Below Practical Quantitation Limit PQL: Practical Quantitation Limit

Environmental and Analytical Services-Since 1994

QUALITY CONTROL SECTION

1536 Eastman Ave. Suite B, Ventura, California 93003 Ph: (805)644-1095 FAX: (805)644-9947 www.capcoenv.com

68

Sample ID: Ma CAS LAB NO:					Ar	nalyst: ABE
		TOTAL MI	TALS SUM	MARY		
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED
Arsenic	BQL	ug/L	1	1.0	200.8	07/07/16
Copper	BQL	ug/L	1	2.0	200.8	07/07/16
Lead	BQL	ug∕L	1	0.5	200.8	07/07/16
Zinc	BQL	ug∕L	1	3.0	200.8	07/07/16

QUALITY CONTROL SECTION

- DF: Dilution Factor
- BQL: Below Practical Quantitation Limit
- PQL: Practical Quantitation Limit

			PINK COPY	CANARY COPY	CAN	WHITE COPY
		72 HOURS				
		48 HOURS				
RETURN SAMPLES		24 HOURS	Received by: (Signature)	Date/Time		Heimquished by: (Signature)
DISPOSE SAMPLES		- X	5	06,2 01 0. 1. 1	ARAN	2 Inmr
CHECK ONE BOX:	IRN AROUND TIME	TUF	Received by: (Signature)		ter lan	Relinquisted by: (Signature
re a part of this agreement.	The undersigned hereby acknowledges having received a copy of the Fee Schedule/General Information and Conditions, the provisions of which are a part of this agreement.	Ite/General Information and	ved a copy of the Fee Schedu	wledges having receiv	I hereby ackno	The undersigned
	×		ROOM IL SINK V		X	151
	X		Rom 10 sinkinge,	y 11 >		4
			Fountain Rm 10	(Yet T	X	
			RR Sinkoutrie	(Bluge - R		2
	X		Torese 14A sink	< = - st. Tc		
			Bathroom sink	$\langle = - A $		6
			SINK	(n - 10B		
			Orinking Fountain 91+	$\langle - n \rangle$		5
			m 9A/PD	(BUB-Room	X	
	X		se Bib	S = - Host		0
			Drinking Fountain	(= 11 - Drin	4	
			Men's RR sink	$\langle 1 - M$		4
	X		Women's RR sink	$\langle \cdots - u u \rangle$		<i>S</i>
			Kitchen sink 1	$k = -k \partial$		\mathcal{N}
	I		sink	(GVGC - office	< 00: h	1 6/25/16
REMARKS		MATHIX SOIL SLUDGE OTHER # 1 TYPE	ATION WATER	GRAA IDENTIFICATION	COM	SAMPLE DATE TIME NO. SAMPLED SAMPLED
"It 81t /					P.	
161511	VALYSIS	CONTAINER TYPES A=AMBER B=BRASS G=GLASS P=PLASTIC V=VOAVIAL O=OTHER		n Forler	ure)	SAMPLERS: (Signature)
//PAGE A	he ////	10-10	Soleta Volley Comm Cente)/	alda-
Contact 7	Phone	Alan Forb	1646-199	Y RECORD	CHAIN OF CUSTODY RECORD	CHAIN OF C
0	(env)ro.com	sess@fre	Qi.		ax 644-9947	(805) 644-1095 Fax 644-9947
	Address	Mercer Ave.	1009 1	(1042)	venue, Suite B)3	1536 Eastman Avenue, Suite Ventura, CA 93003
	- Company Same	Fax nuironmental	FCGE	ES	SERVICES	UMPUL
- 1	BILI TO:		REPORT	CAL	ANALYTI	

. :

CANARY COPY PINK COPY	72 HOURS	Relinquished by: (Signature) 24 HOURS 48 HOURS 48 HOURS	12 UV 11/16 10130 CI STANDARD	Relinquished by: (Signature)	The undersigned hereby acknowledges having received a copy of the Fee Schedule/General Information and Conditions, the provisions of which are a part of this agreement.				X " " Rm8-sink X	X = PmP = X	X C-Anney Rm 6-sink X 1	X 11 - Room 12 O.F. X 1	X 11 - Room 13 Strike X 1 1	X " - Pm13 " - K 1	K G - N N EXT D.F. X 1	TIME P B SAMPLE MATRIX	SAMPLERS: (Signature) SAMPLERS: (Signature)	HOJ. NO PROJECT NAME THY of Galeta - 01 GVCC	CHAIN OF CUSTODY RECORD Phone Contact	Ventura, CA 93003 Address (805) 644-1095 Fax 644-9947 Address www.cancoeny.com Email	Company FCC E	ANALYTICAL REPORT Fax
				TURN AROUND TIME CHECK ONE BOX:	on and Conditions, the provisions of which are a part of this agreement.											CONTAINER OF THE APPR	ANALYSIS CON	24/////////	Phone Contact	Address	Same	BILL TO: P.O.#

į.

71

÷

.....

Analytical Services, Inc.

Environmental and Analytical Services-Since 1994 California State Accredited Laboratory in Accordance with ELAP Certificate # 2332

Prepared for: Forbess Consulting Group Env. 1009 Mercer Avenue Ojai, CA 93023 Attn: Alan Forbess

Report Date: July 19, 2016 Laboratory Number: 161512 Project Name: Goleta Valley Comm. Center Project No: City of Goleta-01 Sampled by: Client

Enclosed are the analysis results for samples received July 1, 2016 with the Chain of Custody document. The sample was received in good condition, at 10°C, and it was identified and assigned the laboratory ID number listed below:

SAMPLE DESCRIPTION

CAS LAB NUMBER ID

GVCC-Main Source Water

161512-01

By my signature below, I certify that the results contained in this laboratory report comply with applicable standards for certification by the California Department of Public Health's Environmental Laboratories Accreditation Program (ELAP), both technically and for completeness, and that, based on my inquiry of the person or persons directly responsible for performing the analyses, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Lance Lewy-Laboratory Director

If you have any further questions or concerns, please contact me at your convenience. This report consists of 25 pages excluding the cover letter and the Chain of Custody.

This report shall not be reproduced except in full without the written approval of CAS. The test results reported represent only the item being tested and may not represent the entire material from which the sample was taken.

Environmental and Analytical Services-Since 1994 California State Accredited Laboratory in Accordance with ELAP Certificate # 2332

Client: FCG Enviro CAS LAB NO: 161512 Analyst: ABE				Date	te Sampled: e Received: ple Matrix:	07/01/16
<u> </u>	INORG	GANIC MET	ALS SU	JMMARY		
COMPOUND	RESULTS	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab#: 161512 Sample ID: GVCC-1		• Water				
Aluminum	BQL	µg∕L	1	100	200.7	07/05/16
Antimony	BQL	µg∕L	1	2	200.8	07/07/16
Arsenic	1.1	µg∕L	1	1	200.8	07/07/16
Barium	43	µg∕Ľ	1	1	200.8	07/07/16
Beryllium	BQL	µg∕L	1	0.5	200.8	07/07/16
Cadmium	BQL	µg∕L	1	0.5	200.8	07/07/16
Chromium	BQL	µg∕L	1	2	200.8	07/07/16
Lead	BQL	µg∕L	1	1.	200.8	07/07/16
Mercury	BQL	µg∕L	1	0.5	245.1	07/07/16
Nickel	2.0	µg∕Ľ	1	1	200.8	07/07/16
Selenium	6.4	µg∕L	1	2	200.8	07/07/16
Silver	BQL	µg∕L	1	1	200.8	07/07/16
Thallium	BQL	µg∕L	1	1	200.8	07/07/16
Vanadium	1.3	µg∕L	1	1	200.8	07/07/16

DF: Dilution Factor

ug/L: Micrograms/Liter(ppb) BQL: Below Quantitation Limit PQL: Practical Quantitation Limit

Environmental and Analytical Services-Since 1994 California State Accredited Laboratory in Accordance with ELAP Certificate # 2332

CERTIFICATE OF ANALYSIS

Client: FCG Environmental	Date Sampled: 06/30/16
CAS LAB NO: 161512-01	Date Received: 07/01/16
Sample ID: GVCC-Main Source Water	Sample Matrix: Water
Analyst: AN/ABE/GP	-

GENERAL MINERAL SUMMARY

COMPOUND	RESULT	UNITS	DF	PQL	METHOD	ANALYZED
Alkalinity (CaCO ₃) Bicarbonate (CaCO ₃)	295 295	mg/L mg/L	1 1	10 10	2320 B 2320 B	07/05/16 07/05/16
Carbonate (CaCO ₃) Hydroxide (CaCO ₃) pH (Lab Analyzed)	BQL BQL 7 , 2	mg∕L mg∕L S.U.	1 1 1	10 10 	2320 B 2320 B 4500- ^{∺+} B	07/05/16 07/05/16 07/01/16 11:10 AM
Total Hardness Chloride Fluoride Nitrate (as N) Sulfate Spec. Conductivity T.D.S. MBAS Surfactants Boron	480 55 0.58 1.1 240 1175 800 BQL 0.10	mg/L mg/L mg/L mg/L µS/cm mg/L mg/L mg/L	1 1 1 1 1 1 1	10 0.20 0.10 0.05 0.20 1.0 10 0.1 0.05	2340 C 300 300 300 120.1 2540 C 5540 C 200.7	07/05/16 07/01/16 07/01/16 07/01/16 07/01/16 07/01/16 07/05/16 07/01/16 07/01/16
Calcium Copper Iron Magnesium Manganese Potassium Sodium Zinc	120 BQL BQL 31 BQL 1.8 62 BQL	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1 1 1 1 1 1	0.1 0.02 0.05 0.1 0.005 0.2 0.5 0.03	200.7 200.7 200.7 200.7 200.7 200.7 200.7 200.7	07/05/16 07/05/16 07/05/16 07/05/16 07/05/16 07/05/16 07/05/16

BQL: Below Quantitation Limit PQL: Practical Quantitation Limit T.D.S.: Total Dissolved Solids mg/L: Milligrams/Liter(ppm)

Environmental and Analytical Services - Since 1994

Report Date: 07/05/16	Analysis:	Analysis: Coliform/E-Coli Bacteria
Forbess Consulting Group Environmental	Project Name	Project Name: Goleta Valley Comm. Center
Att: Alan Forbess	Sampler:	Alan Forbess
1009 Mercer Avenue	Matrix:	Water
Ojai, CA 93023	Analyst:	ΗF

Sample Handling Information

1 161512-01		1D CAS #
· · · ·		; ; ;
Source Water GVCC-Main		Description
Drinking-Routine		Sample type
06/30/16	date	San
1500	time	Sampled
07/01/16	started	
1109	d	Ana
07/02/16	finished	Analysis
1224	ied	

Analytical Results

د_		Ξ
	-	Ū
161512-01		CAS #
Source Water GVCC-Main		Description
N/A	total/ free	Chlorine
10.0	ိင	Temp
SM 9223 B		Method
A/P / 100ml		Units
Absent	Coliform	Total
Absent		F Coli
N/A	Person	Notii
N/A	date	fied

A/P: Absents / Presents

1536 Eastman Ave., Suite B, CA 93003 Phone:(805)644-1095 FAX:(805)644-9947 website: capcoenv.com

Date of Report: 07/12/2016

Rosa Hernandez

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003

Client Project:161512-01 (Source Water GVCC-Main)BCL Project:Water SamplesBCL Work Order:1618106Invoice ID:B240025

Enclosed are the results of analyses for samples received by the laboratory on 7/5/2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Sandoval Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. Report ID: 1000498672 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Table of Contents

Sample II	atormation		
Ch	nain of Custody and Cooler Receipt form		3
La	boratory / Client Sample Cross Reference	Ę	5
Sample R	Results		
16	18106-01 - 161512-01 (Source Water GVCC-Main)		
	Volatile Organic Analysis (EPA Method 524.2)		5
	Halogenated Acetic Acids (Method EPA-552.3)	7	,
Quality C	ontrol Reports		
Vo	latile Organic Analysis (EPA Method 524.2)		
	Method Blank Analysis		ļ
	Laboratory Control Sample)
	Precision and Accuracy		0
Ha	logenated Acetic Acids (Method EPA-552.3)		
	Method Blank Analysis		1
	Laboratory Control Sample	1	2
	Precision and Accuracy		3
Notes			
No	tes and Definitions	1	4

Laboratories, Inc. Environmental Testing Laboratory Since 1949

Chain of Custody and Cooler Receipt Form for 1618106 Page 1 of 2

and the second				Loophan
Chain of Custody	SMH SAA		Company Company Check/CashCara Packing Material:	1944-4045 (1944-4046) 1945
$\frac{ 6- 8 06}{ 8 6 6 6 6 6 6 6 6 6 6 6 6 $	1536 Eastman Ave Ste B Ventura Carbon Capite: Project information: CA 93003 Carbon Capite: Project information: CA 93003 CDHS Carbon Capite: 161512-01 (Source Water GVCC-Main) PO # 585776 Merced Ca Tubre Ca How would you like your completed results senf JE-Mail Fax EDD Mail Carbo Sampler Name Printed/Signature QC Request Result Request ** Surcharge Other: VC Matrix Types: RSW = Rw Gound Water CFW = Cloimated Water System Na. * CMM = Cloimated Water YC		Company Carper Date Time Received by (Signature and Prin Name) Received by (Signature and Prin Name) Received by (Signature and Prin Name) Company Compa	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report atteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com 78 Pa

Laboratories, Inc.

Β

Environmental Testing Laboratory Since 1949

Chain of Custody and Cooler Receipt Form for 1618106 Page 2 of 2

Submission #: 6 - 8 [06] SHIPPING INFORM Fed Ex UPS Ontract BC Lab Field Service Other	MATION Hand (Specify			Ice Che	est 💬 🛛	CONTAI None D	NER Box D		FREE LIC YES D W/	NO
Refrigerant: Ice 🛛 Blue Ice 🗆			Other 🛛	Comm	nents:					
Custody Seals Ice Chest D	Containt Intact? Yes	ers⊡ ⊡No⊡	None		ments:					,
All samples received? Yes 🖬 No 🗆 🖌	All samples	container	s intact? Y	es 🖉 No	0	Descrip	tion(s) mate	h COC?	(es, p) No	0
COC Received Emi	issivity: <u>0</u> mperature:	.95 (A)	Containers	Amber c	Thermor	neter ID: 2	<u>08</u>	Date/Tin Analyst	ne] <u>-S-U</u> Init/	<u>e</u> (82)
	T					E NUMBERS		A		
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	е	10
QT PE UNPRES	Ĩ						ļ	Ţ		
40z/8az/16oz PE UNPRES	<u> </u>	Į		ļ		ļ	ļ	ļ	ļ	
20z Cr14	_	ļ	<u> </u>	ļ	ļ		ļ	L	ļ	
OT INORGANIC CHEMICAL METALS	<u> </u>	<u> </u>					ļ		 	
INORGANIC CHEMICAL METALS 402 / 802 / 1602	1								<u> </u>	1
PT CYANIDE	1	l	<u> </u>				ļ	<u> </u>	<u> </u>	-
PT NITROGEN FORMS	-		.							
PT TOTAL SULFIDE		<u> </u>								
202. NITRATE / NITRITE	_		1			ļ		 	<u> </u>	
PT TOTAL ORGANIC CARBON		<u> </u>						<u> </u>		
PT CHEMICAL OXYGEN DEMAND							l			+
PIA PHENOLICS					~~~~~					
10ml VOA VIAL TRAVEL BLANK 10ml VOA VIAL 098	Аb							<u> </u>	<u> </u>	· · · · ·
10ml VOA VIAL 09D 27-EPA 1061 HAAS 089	C C	· · · · ·							1	+
21 ODOR	1- <u> </u>								1	1
RADIOLOGICAL	· · ·									
BACTERIOLOGICAL										
10 ml VOA VIAL-504										
TEPA 508/608/8080									1	
)T EPA 515.1/8150										
T EPA 525										
IT EPA 525 TRAVEL BLANK	ļ									<u> </u>
0ml EPA 547										
0ml EPA 531.1									ļ	
02 EPA 548										
T EPA 549										┨────
T EPA 8015M										
T EPA 3270										
z/160z/32qz AMBER										
z / 160z / 320z JAR DIL SLEEVE								~~~		
IL SLEEVE										[
ASTIC BAG										<u> </u>
DLAR BAG									•	
RROUS IRON										
ICORE										
IART KIT						İ	,			
MMA CANISTER										
TATAL OF THE LEFT		1			<u>, ,</u> ,		,l	ليد		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1000498672 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com TO Particular Court C

Laboratories, Inc.

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003 Reported:07/12/201610:55Project:Water SamplesProject Number:161512-01 (Source Water GVCC-Main)Project Manager:Rosa Hernandez

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	01		
1618106-01	COC Number:		Receive Date:	07/05/2016 18:15
	Project Number:		Sampling Date:	06/30/2016 15:00
	Sampling Location:		Sample Depth:	
	Sampling Point: Sampled By:	161512-01 (Source Water GVCC-Main) Client	Lab Matrix: Sample Type:	Water Water

Laboratories, Inc.

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003

Reported: 07/12/2016 10:55 Project: Water Samples Project Number: 161512-01 (Source Water GVCC-Main) Project Manager: Rosa Hernandez

Volatile Organic Analysis (EPA Method 524.2)

BCL Sample ID:	1618106-01	Client Sampl	e Name:	161512-0	1 (Source	Water GVCC-Ma	ain), 6/30/2016	3:00:00PM, Client	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quais	Run #
Bromodichloromethane		9.2	ug/L	0.50	0.14	EPA-524.2	ND		1
Bromoform		4.0	ug/L	0.50	0.27	EPA-524.2	ND		1
Chloroform		5.7	ug/L	0.50	0.12	EPA-524.2	ND		1
Dibromochloromethane		12	ug/L	0.50	0.13	EPA-524.2	ND		1
Total Trihalomethanes		31	ug/L	2.0	0.63	EPA-524.2	ND		1
1,2-Dichloroethane-d4 (Si	urrogate)	99.2	%	75 - 125 (LC	L - UCL)	EPA-524.2			1
Toluene-d8 (Surrogate)		97.5	%	80 - 120 (LC	L - UCL)	EPA-524.2			1
4-Bromofluorobenzene (S	urrogate)	95.8	%	80 - 120 (LC	L - UCL)	EPA-524.2			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-524.2	07/06/16	07/06/16 19:08	JMS	MS-V14	1	BZG0243

Laboratories, Inc.

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003

Reported: 07/12/2016 10:55 Project: Water Samples

Project Number: 161512-01 (Source Water GVCC-Main)

Project Manager: Rosa Hernandez

Halogenated Acetic Acids (Method EPA-552.3)

BCL Sample ID: 161	8106-01	Client Sampl	e Name:	161512-0	1 (Source	Water GVCC-Ma	in), 6/30/2016	3:00:00PM, Client	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Dibromoacetic acid		2.8	ug/L	1.0	0.56	EPA-552.3	ND		1
Dichloroacetic acid		ND	ug/L	1.0	0.75	EPA-552.3	NÐ		1
Monobromoacetic acid		ND	ug/L	1.0	0.44	EPA-552.3	ND		1
Monochloroacetic acid		ND	ug/L	1.0	0.49	EPA-552.3	ND		- 1
Trichloroacetic acid		1.8	ug/L	1.0	0.72	EPA-552.3	ND		1
Total HAA's (Summation)		5.3	ug/L	1.0	1.0	EPA-552.3	ND		1
2,3-Dibromopropionic acid (Su	rogate)	92.0	%	70-130 (LC	L - UCL)	EPA-552.3			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-552.3	07/08/16	07/11/16 13:05	EO1	GC-3	1	BZG0707

Laboratories. Inc.

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003

IJ,

Reported: 07/12/2016 10:55 Project: Water Samples Project Number: 161512-01 (Source Water GVCC-Main) Project Manager: Rosa Hernandez

Volatile Organic Analysis (EPA Method 524.2)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZG0243						
Bromodichloromethane	BZG0243-BLK1	ND	ug/L	0.50	0.14	
Bromoform	BZG0243-BLK1	ND	ug/L	0.50	0.27	
Chloroform	BZG0243-BLK1	ND	ug/L	0.50	0.12	
Dibromochloromethane	BZG0243-BLK1	ND	ug/L	0.50	0.13	
Total Trihalomethanes	BZG0243-BLK1	ND	ug/L	2.0	0.63	
1,2-Dichloroethane-d4 (Surrogate)	BZG0243-BLK1	97.2	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	BZG0243-BLK1	100	%	80 - 12	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BZG0243-BLK1	97.6	%	80 - 12	0 (LCL - UCL)	

Laboratories, Inc.

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003

 Reported:
 07/12/2016 10:55

 Project:
 Water Samples

 Project Number:
 161512-01 (Source Water GVCC-Main)

 Project Manager:
 Rosa Hernandez

Volatile Organic Analysis (EPA Method 524.2)

Quality Control Report - Laboratory Control Sample

								Control I	_imits	
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: BZG0243			·							
Bromodichloromethane	BZG0243-BS1	LCS	22.870	25.000	ug/L	91.5	•	70 - 130		
Bromoform	BZG0243-BS1	LCS	20.296	25.000	ug/L	81.2		70 - 130		
Chloroform	BZG0243-BS1	LCS	23.360	25.000	ug/L	93.4		70 - 130		
Dibromochloromethane	BZG0243-BS1	LCS	22.454	25.000	ug/L	89.8		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BZG0243-BS1	LCS	9.6900	10.000	ug/L	96.9		75 - 125		
Toluene-d8 (Surrogate)	BZG0243-BS1	LCS	9.9300	10.000	ug/L	99.3		80 - 120		
4-Bromofluorobenzene (Surrogate)	BZG0243-BS1	LCS	10.020	10.000	ug/L	100		80 - 120		

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003

 Reported:
 07/12/2016
 10:55

 Project:
 Water Samples

 Project Number:
 161512-01 (Source Water GVCC-Main)

 Project Manager:
 Rosa Hernandez

Volatile Organic Analysis (EPA Method 524.2)

Quality Control Report - Precision & Accuracy

									Cont	trol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BZG0243	Use	d client samp	le: N		·····						
Bromodichloromethane	MS	1618131-01	ND	23.153	25.000	ug/L		92.6		70 - 130	
	MSD	1618131-01	ND	24.059	25.000	ug/L	3.8	96.2	20	70 - 130	
Bromoform	MS	1618131-01	ND	20.321	25.000	ug/L		81.3		70 - 130	
	MSD	1618131-01	ND	20.990	25.000	ug/L	3.2	84.0	20	70 - 130	
Chloroform	MS	1618131-01	ND	23.741	25.000	ug/L		95.0		70 - 130	
	MSD	1618131-01	ND	24.542	25.000	ug/L	3,3	98,2	20	70 - 130	
Dibromochloromethane	MS	1618131-01	ND	22.847	25.000	ug/L		91.4		70 - 130	
	MSD	1618131-01	ND	23.573	25.000	ug/L	3.1	94.3	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1618131-01	ND	9.8200	10.000	ug/L		98.2		75 - 125	
	MSD	1618131-01	ND	9.9500	10.000	ug/L	1.3	99.5		75 - 125	
Toluene-d8 (Surrogate)	MS	1618131-01	ND	9,8900	10.000	ug/L		98.9		80 - 120	
	MSD	1618131-01	ND	10.050	10.000	ug/L	1,6	100		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS	1618131-01	ND	9.9300	10.000	ug/L		99.3		80 - 120	
	MSD	1618131-01	ND	9.9700	10.000	ug/L	0.4	99.7		80 - 120	

Laboratories, Inc.

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003

07/12/2016 10:55 Reported: Project: Water Samples Project Number: 161512-01 (Source Water GVCC-Main) Project Manager: Rosa Hernandez

Halogenated Acetic Acids (Method EPA-552.3)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZG0707						
Dibromoacetic acid	BZG0707-BLK1	ND	ug/L	1.0	0.56	
Dichloroacetic acid	BZG0707-BLK1	ND	ug/L	1.0	0.75	
Monobromoacetic acid	BZG0707-BLK1	ND	ug/L	1.0	0.44	
Monochloroacetic acid	BZG0707-BLK1	ND	ug/L	1.0	0.49	
Trichloroacetic acid	BZG0707-BLK1	ND	ug/L	1.0	0.72	
Total HAA's (Summation)	BZG0707-BLK1	ND	ug/L	1.0	1.0	· ·
2,3-Dibromopropionic acid (Surrogate)	BZG0707-BLK1	83.3	%	70 - 13	0 (LCL - UCL)	

Laboratories, Inc.

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003

 Reported:
 07/12/2016 10:55

 Project:
 Water Samples

 Project Number:
 161512-01 (Source Water GVCC-Main)

 Project Manager:
 Rosa Hemandez

Halogenated Acetic Acids (Method EPA-552.3)

Quality Control Report - Laboratory Control Sample

								Control L	_imits	
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quais
QC Batch ID: BZG0707										
Dibromoacetic acid	BZG0707-BS1	LCS	13.448	15.000	ug/L	89.7		70 - 130		
Dichloroacetic acid	BZG0707-BS1	LCS	13.196	15.000	ug/L	88.0		70 - 130		
Monobromoacetic acid	BZG0707-BS1	LCS	12.331	15.000	ug/L	82.2		70 - 130		
Monochloroacetic acid	BZG0707-BS1	LCS	13.376	15.000	ug/L	89.2		70 - 130		
Trichloroacetic acid	BZG0707-BS1	LCS	16.619	15.000	ug/L	111		70 - 130		
2,3-Dibromopropionic acid (Surrogate)	BZG0707-BS1	LCS	14.0	15.0	ug/L	93.5		70 - 130		

Laboratories, Inc.

Capco Analytical Services, Inc. 1536 Eastman Avenue Suite B Ventura, CA 93003

 Reported:
 07/12/2016
 10:55

 Project:
 Water Samples

 Project Number:
 161512-01 (Source Water GVCC-Main)

 Project Manager:
 Rosa Hernandez

Halogenated Acetic Acids (Method EPA-552.3)

Quality Control Report - Precision & Accuracy

									Cont	trol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BZG0707	Use	d client samp	ole: N								
Dibromoacetic acid	MS	1616196-49	ND	11.152	15,000	ug/L		74.3		70 - 130	
	MSD	1616196-49	ND	11.593	15.000	ug/L	3.9	77.3	30	70 - 130	
Dichloroacetic acid	MS	1616196-49	ND	11.519	15.000	ug/L		76.8		70 - 130	
	MŞD	1616196-49	ND	11.904	15.000	ug/L	3.3	79.4	30	70 - 130	
Monobromoacetic acid	MS	1616196-49	ND	11.527	15.000	ug/L		76.8		70 - 130	
	MSD	1616196-49	ND	11.704	15.000	ug/L	1.5	78.0	30	70 - 130	
Monochloroacetic acid	MS	1616196-49	ND	12.794	15.000	ug/L		85.3		70 - 130	
	MSD	1616196-49	ND	13.612	15.000	ug/L	6.2	90.7	30	70 - 130	
Trichloroacetic acid	MS	1616196-49	NÐ	14.023	15.000	ug/L		93.5		70 - 130	
· ·	MSD	1616196-49	ND	14.861	15.000	ug/L	5.8	99.1	30	70 - 130	
2,3-Dibromopropionic acid (Surrogate)	MS	1616196-49	ND	12.5	15,0	ug/L		83.4		70 - 130	
	MSD	1616196-49	ND	12.0	15.0	ug/L	3.8	80.3		70 - 130	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. Report ID: 1000498672 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Laboratories, Inc.	
--------------------	--

Capco Analytical Services, Inc.	Reported: 07/12/2016 10:55
1536 Eastman Avenue Suite B	Project: Water Samples
Ventura, CA 93003	Project Number: 161512-01 (Source Water GVCC-Main)
	Project Manager: Rosa Hernandez

Notes And Definitions

MDL	Method Detection Limit

ND Analyte Not Detected

PQL Practical Quantitation Limit

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

ENVIRONMENTAL AGRICULTURAL Analytical Chemists

July 18, 2016

Capco Analytical Services 1536 Eastman Ave., Ste B Ventura, CA 93003

: SP 1607509 Lab ID Customer : 2-20901

Laboratory Report

Introduction: This report package contains total of 3 pages divided into 3 sections:

Case Narrative	(1 pages) : An overview of the work performed at FGL.
Sample Results	(1 page) : Results for each sample submitted.
Quality Control	(1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
161512-01 (Source Water GVCC-M	06/30/2016	07/05/2016	SP 1607509-001	WW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived on ice. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

900.0	07/12/2016:209834 All analysis quality controls are within established criteria
	07/11/2016:208058 All preparation quality controls are within established criteria

Radio OC

Certification: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573 CA ELAP Certification Page 1 of 3

Digitally signed by Kelly A. Dunnahoo, B.S. Title: Laboratory Director

: 2016-07-18

	Ē	N	V	11	X	Ň	N		N							a,	ļ	(1	R	C	Ľ			J	R	A	L		たいないない
						*			9.	1	5	R	A	Č,	10	6	5	đ,	1				欟	5				S.		

July 18, 2016

Capco Analytical Services

1536 Eastman Ave., Ste B Ventura, CA 93003

Lab ID : SP 1607509-001 Customer ID : 2-20901

Sampled On : June 30, 2016-15:00 Sampled By : Alan Forbes Received On : July 5, 2016-11:12 : Waste Water Matrix

Description : 161512-01 (Source Water GVCC-M Project : 585745

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample Preparation		Sampl	e Analysis
Constituent	Result + Enor	MDA	Omts		Method	Date/ID	Method	Date/ID
Radio Chemistry ^{P:1}								
Gross Alpha	2.86 ± 2.39	2.27	pCi/L		900.0	07/11/16-08:05 2P1608058	900.0	07/12/16-16:00 2A1609834

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: N/A * PQL adjusted for dilution.

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference. MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV). AV = Assigned Value(Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance: Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L Uranium is less than or equal to 20 pCi/L Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912 CA ELAP Certification No. 1563 CA ELAP Certification No. 2670 CA ELAP Certification No. 2775 Page 2 of 3

Office & Laboratory 9415 W. Goshen Avenue Visalia, CA 93291 TEL: (559)734-9473 FAX: (559)734-8435 CA ELAP Certification No. 2810

	1.42	
	Ň	
ł		
	3	
	100	
	Ì	
1000	À	
10000	-	
	ľ	
10000	ļ	
	2	
XXX III	l	
	1	
-		
J.	3	
	1	*
Ļ		
l	100	
ļ	-	
1		1.0
Surger State	z	-
5.00		
	×.	_
		_
	(14-14-14) (14-14-14)	23
	9. 1	
		92
	ì	
日と		
No.	Š	500 A
SCC (11)		
無次	and a	
1.65.65	Ĭ	See 8
223622		1000
	ľ	
	I	100
(S) (S)	STATE	
20 12	Ĩ	
0		
253355		
	0	
1000	Sec. 1	
		1000

July 18, 2016

Capco Analytical Services

Lab ID Customer

: SP 1607509 : 2-20901

Quality Control - Radio

Constituent		Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Radio									
Alpha		900.0	07/12/16:209834caa	CCV CCB	cpm cpm	8629	42.2 % 0.100	39 - 48 0.14	
Gross Alpha		900.0	07/11/16:208058ELC (CH 1675211-001)	Blank LCS MS MSD	pCi/L pCi/L pCi/L pCi/L	107.4 107.4 107.4	0.02 97.6 % 108 % 109 %	3 75-125 60-140 60-140	
Definition CCV CCB			tion - Analyzed to verif				0.7%	≤30	<u> </u>
Blank LCS	: Method Blank - Pi : Laboratory Contro	repared to veri al Standard/Sa	Analyzed to verify the i fy that the preparation mple - Prepared to verify	process is no fy that the p	ot contributing reparation pro	g contaminat cess is not a	ffecting analyt	e recovery.	
мѕ	: Matrix Spikes - A matrix affects analy		le is spiked with a know	vn amount o	f analyte. The	recoveries	are an indicatio	on of how that	at sample
MSD			ISD pair - A random sa ple matrix affects analy			with a know	n amount of ar	alyted. The	recoveries
MSRPD	: MS/MSD Relative and analysis.	Percent Diffe	erence (RPD) - The MS	relative per	cent differenc	e is an indic	ation of precis	ion for the pr	reparation
DQO	: Data Quality Obje	ctive - This is	the criteria against whi	ch the qualit	ty control data	is compare	đ.		

Page 3 of 3

Environmental and Analytical Services-Since 1994

QUALITY CONTROL SECTION

1536 Eastman Ave. Suite B, Ventura, California 93003 Ph: (805)644-1095 FAX: (805)644-9947 www.capcoenv.com

Environmental and Analytical Services-Since 1994

California State Accredited Laboratory in Accordance with ELAP Certificate # 2332

	Q	JALITY CONTRO	L SECTION	1		
Sample ID: Method E CAS LAB NO: 161512-		,m			Analys	t: ABE
	IN	ORGANIC METAI	S SUMMAR	Ÿ		_
COMPOUND ====================================	RESULT	UNITS ==========	DF ======	PQL ======	METHOD	ANALYZED
Aluminum	BQL	µg∕L	1	100	200.7	07/05/16
Antimony	BQL	µg∕L	1	2	200.8	07/07/16
Arsenic	BQL	µg∕L	1	1	200.8	07/07/16
Barium	BQL	µg∕L	1	1	200.8	07/07/16
Beryllium	BQL	µg∕L	1	0.5	200.8	07/07/16
Cadmium	BQL	µg∕L	1	0.5	200.8	07/07/16
Chromium	BQL.	µg∕L	1	2	200.8	07/07/16
Lead	BQL	µg∕L	1	1	200.8	07/07/16
Mercury	BQL	µg∕L	1	0.5	245.1	07/07/16
Nickel	BQL	µg∕L	1	1	200.8	07/07/16
Selenium	BQL	µg∕L	1	2	200.8	07/07/16
Silver	BQL	µg∕L	1	1	200.8	07/07/16
Thallium	BQL.	µg∕L	1	1	200.8	07/07/16
Vanadium	BQL	µg∕L	1.	1	200.8	07/07/16

DF: Dilution Factor ug/L: Micrograms/Liter(ppb) EQL: Below Quantitation Limit FQL: Practical Quantitation Limit

Environmental and Analytical Services-Since 1994 California State Accredited Laboratory in Accordance with ELAP Certificate # 2332

QUALITY CONTROL SECTION

Client	FCG Environmental	
Sample	ID: Method Blank	
Sample	Matrix: Water	

CAS LAB NO: 161512-MB Analyst: ABE/AN

GENERAL MINERAL SUMMAR

COMPOUND	RESULT	UNITS	DF	PQL	METHOD	ANALYZED
Alkalinity (CaCO ₃)	BQL	mg/L	1	10	2320 B	07/05/16
Bicarbonate $(CaCO_3)$	BQL	mg/L	1	10	2320 B	07/05/16
Carbonate (CaCO ₃)	BQL	mg/L	1	10	2320 B	07/05/16
Hydroxide (CaCO ₃)	BQL	mg∕L	1	10	2320 B	07/05/16
Total Hardness	BQL	mg/L	1	10	2340 C	07/05/16
Τ, D, S,	BQL	mg∕L	1	10	2540 C	07/05/16
MBAS Surfactants	BQL.	mg/L	1	0.1	5540 C	07/01/16
Boron	BQL	mg/L	1	0.05	200.7	07/05/16
Calcium	BQL	mg/L	1	0,1	200.7	07/05/16
Copper	BQL	mg/L	1	0.02	200.7	07/05/16
Iron	BQL.	mg∕L	1	0.05	200.7	07/05/16
Magnesium	BQL	mg/L	1	0.1	200.7	07/05/16
Manganese	BQL	mg/L	1	0.005	200.7	07/05/16
Potassium	BQL	mg/L	1	0.2	200.7	07/05/16
Sodium	BQL	mg/L	1	0.5	200.7	07/05/16
Zinc	BQL	mg⁄L	1	0.03	200.7	07/05/16

BQL: Below Quantitation Limit PQL: Practical Quantitation Limit T.D.S.: Total Dissolved Solids mg/L: Milligrams/Liter(ppm)

Quality Control Report

Client:	FCG Env.				Date Samp	oled:	06/30/16
Sample ID:					Date Rece		07/01/16
CAS LAB NO:	161512				Date Anal	vzed:	07/01/16
Sample Matrix:	WATER				Analyst:		GP
Sample Name	Qualifier	Sample Result	QC Result	Unit	Spike Level	%REC	Control Limits
	<u>Chloride (by</u>	EPA 300)					
Method Blank			BQL	mg/L			
Lab Control Sample			29.87	mg/L	30	100	80-120
161502-01 Matrix Spike		23.56	54.35	mg/L	30	103	90-110
161502-01 Matrix Spike Duplicate		23.56	55.28	mg/L	30	106	90-110
	<u>Fluoride (by</u>	EPA 300)					
Method Blank		<u></u>	BQL	mg/L			
Lab Control Sample			10.24	mg/L	10	102	80-120
161502-01 Matrix Spike		0.68	11.53	mg/L	10	109	90-110
161502-01 Matrix Spike Duplicate		0.68	11.64	mg/L	10	110	90-110

mg/L:Milligrams/Liter(ppm)
%Rec:Percent Recovered

BQL:Below Practical Quantitation Limit

Quality Control Report

Client: Sample ID:	FCG Env.				Date Sam	pled:	06/30/16
CAS LAB NO:	161512				Date Rece		07/01/16
Sample Matrix:	WATER				Date Ana	lyzed:	07/01/16
	WALER				Analyst:		GP
Sample Name	Qualifier	Sample Result	QC Result	Unit	Spike Level	%REC	Control Limits
	<u>Nitrate as N</u>	(by EPA 3)	<u>)))</u>				
Method Blank			BQL	mg/L			
Lab Control Sample 161502-01 Matrix			10.37	mg/L	10	104	80-120
Spike		3.26	13.71	mg/L	10	105	90-110
161502-01 Matrix Spike Duplicate		3.26	14.01	mg/L	10	107	90-110
	<u>Sulfate (by E</u>	<u>PA 300)</u>					
Method Blank			BQL	mg/L			
Lab Control Sample 61502-01 Matrix			30.17	mg/L	30	101	80-120
Spike 161502-01 Matrix		86.05	116.74	mg/L	30	102	90-110
161502-01 Matrix Spike Duplicate		86.05	117.06	mg/L	30	103	90-110

BQL:Below Practical Quantitation Limit

WHITE COPY CANARY COPY	Relinquished by: (Signature) Date/Time	OC. al 91/4 wy Marth	The undersigned hereby acknowledges having receil							GVCC - M	5-1 4/3/16 3:00 X SONICE WATCH	NO. SAMPLED SAMPLED & G IDENTIFICATION	P	SAMPLERS: (Signature)	(14 of Coleta Volley	PROJ. NO PROJECT NAME	CHAIN OF CUSTODY RECORD	(805) 644-1095 Fax 644-9947 www.cabcoenv.com	1536 Eastman Avenue, Suite B Ventura, CA 93003	CAPUU SERVICES	
		TURN STANDARD	ved a copy of the Fee Schedule/General Information and C							Main		MATTRIX WATER SOIL SLUDGE OTHER # 1 TYPE		A = AMBER B = BRASS G = GLASS	1 Comm. Centar	-	Phone 205/646199 Sontact A. Forbes		Address 1009 Mercer	REPORT FCG Fax	
		TURN AROUND TIME CHECK ONE BOX:	isions of which are a								X X X X X X I I I I I I I I I I I I I I	XXXXVO/	S		S	//	Phone	Egenviro-Con	Address	- BILL TO: P.O.#	

. .

Attachment 2

Mold/Fungi Analytical Results

Natural Link MOLD LAB

Analytical Laboratory Report

Bioaerosol, non-culturable

Fungal Microscopic Exam

38454-R01

FINAL REPORT

Project/PO: City of Goleta-1 / 5679 Hollister Ave, Building A

Control ID # 38454 Received: 07-05-2016

July 05, 2016

Sem About Sean P. Abbott, Ph.D. Analytical Director, Natural Link MOLD LAB, Inc. AIHÁ (EMPAT) Lab ID 162969 Texas Department of State Health Services, Mold Analysis Laboratory License Number: LAB0146

Report submitted to:

Dana Stephens FCG Environmental 1009 Mercer Avenue Ojai, California 93023

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: A-3, Bldg A, Room 3 (Office); Allergenco-D Spore-trap; 75L; 6/30/2016 [S142983AA100128]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	120	1 600
Basidiospores	20	270
Penicillium/Aspergillus	15	200
Ascospores	5	67
Alternaria	3	40
Ulocladium	1	13
TOTAL	164	2 190
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	None Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

Natural Link **MOLD**

LAB

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: A-4, Bldg A, Room 4 (Dance Rm); Allergenco-D Spore-trap; 75L; 6/30/2016 [S142984AA100129]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	45	600
Ascospores	5	67
Basidiospores	5	67
Penicillium/Aspergillus	5	67
Aureobasidium	2	27
Epicoccum	1	13
Unidentified conidia	1	13
TOTAL	64	854
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	None Detected	
Insect/arthropod parts	Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

• Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

Natural Link **MOLD**

LAB

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: A-5A, Bldg A, Room 5A; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142985AA100130]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	20	270
Basidiospores	15	200
Ascospores	5	67
Penicillium/Aspergillus	4	53
Smuts/Myxomycetes	1	13
Ulocladium	1	13
TOTAL	46	616
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	None Detected	
Pollen	None Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		2
Total non-biological particles		2

Summary of Findings

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

Natural Link MOLD LAB

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: A-5B, Bldg A, Room 5B (Audabon); Allergenco-D Spore-trap; 75L; 6/30/2016 [S142986AA100131]

Fungi Identified	Sample Count (spores/sample)	Calculated Count (spores/m³)
Cladosporium	35	470
Ascospores	10	130
Basidiospores	5	67
Penicillium/Aspergillus	5	67
TOTAL	55	734
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	None Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		2
Total non-biological particles		3

Summary of Findings

• Dominant fungal spores detected on the sample: Cladosporium.

LAB

Natural Link **MOLD**

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

A-6, Bldg A, Room 6; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142987AA100132] Sample Identification:

Fungi Identified	<u>Sample Count (spores/sample)</u>	<u>Calculated Count (spores/m³)</u>
Basidiospores	6	80
Cladosporium	6	80
Epicoccum	1	13
TOTAL	13	173
Other Airborne Particles Hyphal fragments Pollen Insect/arthropod parts Fiberglass particles	Detected /None Detected Detected None Detected None Detected None Detected	<u>Particle Density (1-5)</u>
Total biological particles Total non-biological particles		2 2

Summary of Findings

· Dominant fungal spores detected on the sample: Basidiospores and Cladosporium.

Sensitivity: 13 spores/cubic meter.

See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

5

Natural Link MOLD LAB

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: A-7, Bldg A, Room 7; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142988AA100133]

Fungi Identified	<u>Sample Count (spores/sample)</u>	<u>Calculated Count (spores/m³)</u>
Cladosporium	15	200
Basidiospores	2	27
Botrytis	1	13
TOTAL	18	240
Other Airborne Particles Hyphal fragments Pollen Insect/arthropod parts Fiberglass particles	Detected /None Detected Detected None Detected None Detected None Detected	Particle Density (1-5)
Total biological particles Total non-biological particles		2 2

Summary of Findings

Natural Link **MOLD**

LAB

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Alat

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name: FCG Environmental		Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: A-8, Bldg A, Room 8; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142989AA100134]

<u>Fungi Identified</u>	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	70	930
Basidiospores	20	270
Ascospores	10	130
Penicillium/Aspergillus	8	110
TOTAL	108	1 440
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

Natural Link **MOLD**

LAB

• Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sem About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: A-Kitchen, Bldg A, Kitchen; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142990AA100135]

<u>Fungi Identified</u>	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	80	1 100
Ascospores	55	730
Basidiospores	40	530
Arthrinium	2	27
Rusts	2	27
Trichocladium	2	27
Alternaria	1	13
Aureobasidium	1	13
TOTAL	183	2 467
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	None Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

· Dominant fungal spores detected on the sample: Cladosporium.

Sensitivity: 13 spores/cubic meter.

See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

8

Natural Link **MOLD** LAB

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name: FCG Environmental		Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: A-Office, Bldg A, GVCC Office; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142991AA100136]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	80	1 100
Smuts/Myxomycetes	7	93
Alternaria	5	67
Ascospores	5	67
Basidiospores	5	67
Aureobasidium	3	40
TOTAL	105	1 434
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	Detected	
Fiberglass particles	None Detected	
Total biological particles		4
Total non-biological particles		4

Summary of Findings

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

Natural Link MOLD LAB

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Alat

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: A-Dining, Bldg A, GVCC Dining Rm; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142992AA100137]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	60	800
Ascospores	15	200
Basidiospores	5	67
Penicillium/Aspergillus	5	67
Smuts/Myxomycetes	2	27
Aureobasidium	1	13
Oidium	1	13
TOTAL	89	1 187
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	None Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

• Dominant fungal spores detected on the sample: Cladosporium.

LAB

Natural Link **MOLD**

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Natural Link MOLD	LAB	Fungal Microscopic Exa Bioaerosol, non-culturab		
Account Name: FCG En	vironmental	Control ID #: 38454		
Project PO: City of C	Goleta-1 / 5679 Hollister Ave, Building A	Date Received: 07-05-2016		
Submitter: Dana Ste	ephens	Date Reported: 07-05-2016		
Sample Identification.	A-Auditorium, Bldg A, GVCC Auditorium; Allergenco-D S S142993AA100138]	pore-trap; 75L; 6/30/2016		
Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>		
Cladosporium	65	870		
Basidiospores	20	270		
Penicillium/Aspergillus	16	210		
Ascospores	15	200		
Smuts/Myxomycetes	1	13		
TOTAL	117	1 563		
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)		
Hyphal fragments	Detected			
Pollen	None Detected			
Insect/arthropod parts	Detected			
Fiberglass particles	None Detected			
Total biological particles		2		
Total non-biological particles		3		

Summary of Findings

• Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Altot

Analytical Laboratory Report

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: OS-1, Outside / Background, Rear; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142994AA100139]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	165	2 200
Basidiospores	35	470
Penicillium/Aspergillus	20	270
Ascospores	15	200
Smuts/Myxomycetes	8	110
Alternaria	2	27
Aureobasidium	1	13
Botrytis	1	13
Epicoccum	1	13
Oidium	1	13
Stemphylium	1	13
Stigmina	1	13
Ulocladium	1	13
TOTAL	252	3 368
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

Natural Link **MOLD**

LAB

• Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Altott

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38454
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building A	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: OS-2, Outside / Background, Front; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142995AA100140]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	283	3 800
Ascospores	35	470
Basidiospores	20	270
Beltrania	17	230
Nigrospora	7	93
Alternaria	5	67
Penicillium/Aspergillus	5	67
Smuts/Myxomycetes	4	53
Unidentified conidia	4	53
Epicoccum	2	27
Oidium	2	27
Aureobasidium	1	13
TOTAL	385	5 170
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38454-R01A).

Report #:38454-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Abat

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

13

Natural Link MOLD LAB

LAB
Natural Link MOLD

Summary Table

Fungal Microscopic Examination Bioaerosol, non-culturable

FCG Environmental Account Name

City of Goleta-1 / 5679 Hollister Ave, Building A Project/P.O.:

Control # 38454 **Date Reported** 07-05-2016

riojecur.o	n none	ר - I - Bu	City of Ooleta-1 / JU/9 HOILISTEL AVE, DUIJUING A		ve, pullul	L SI				Dair	Date Neput ten		0107-00-10			
Sample ID	A-3, Bldg A, Room 3 (Office)	e)	A.4, Bldg A, Room 4 (Dance Rm)	som 4 tm)	A-5A, Bldg A, Room 5A		A-5B, Bldg A, Room 5B (Audabon)	om 5B on)	A-6, Bldg A, Room 6	oom 6	A-7, Bldg A, Room 7	oom 7	A-8, Bldg A, Room 8	om 8	A-Kitchen, Bldg A, Kitchen	en, tchen
Fungi ID	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total
Alternaria	40	2 %													13	1 %
Arthrinium															27	$1 \ \%$
Ascospores	67	3 %	67	8 %	67	$11 \ \%$	130	$18 \ \%$					130	9 %	730	30 %
Aureobasidium			27	3 %											13	$1 \ \%$
Basidiospores	270	12 %	67	8 %	200	32 %	67	9 %	80	46 %	27	$11 \ \%$	270	19 %	530	21 %
Beltrania																
Botrytis											13	5 %				
Cladosporium	1 600	73 %	600	70 %	270	44 %	470	64 %	80	46 %	200	83 %	930	65 %	1 100	45 %
Epicoccum			13	2 %					13	8 %						
Nigrospora																
Oidium																
Penicillium/Aspergillus	200	9 %	67	8 %	53	9 %	67	9 %					110	8 %		
Rusts															27	1 %
Smuts/Myxomycetes					13	2 %										
Stemphylium																
Stigmina																
Trichocladium															27	$1 \ \%$
Ulocladium	13	1 %			13	2 %										
Unidentified conidia			13	2 %												
	2 190		854		616		734		173		240		1 440		2 467	
															L	TA24692

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502

Report # 38454-R01A

Page 1 of 2

LAB
Natural Link MOLD

Summary Table

Fungal Microscopic Examination Bioaerosol, non-culturable

FCG Environmental Account Name

City of Goleta-1 / 5679 Hollister Ave, Building A Project/P.O.:

Date Reported 07-05-2016 **Control** # 38454

A-Office, Bldg A, GVCC Office	ce, JVCC e	A-Dining, Bldg A, GVCC Dining Rm	lg, VCC Rm	A-Auditorium, Bldg A, GVCC Auditorium		OS-1, Outside Background,	, e / l, Rear	OS-2, Outside / Backgroun Front	t, und, t					
Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total					
67	5 %					27	$1 \ \%$	67	$1 \ \%$					
67	5 %	200	17 %	200	13 %	200	6 %	470	9 %					
40	3 %	13	$1 \ \%$			13	< 1%	13	< 1%					
67	5 %	67	6 %	270	17 %	470	$14 \ \%$	270	5 %					
								230	4 %					
						13	< 1%							
1 100	77 ~ %	800	67 %	870	56 %	2 200	65 ~%	3 800	74 %					
						13	< 1%	27	$1 \ \%$					
								93	2 %					
		13	$1 \ \%$			13	< 1%	27	$1 \ \%$					
		67	6 %	210	13~%	270	8 %	67	$1 \ \%$					
93	6 %	27	2 %	13	$1 \ \%$	110	3 %	53	$1 \ \%$					
						13	< 1%							
						13	< 1%							
						13	< 1%							
								53	1 %					
1 434		1 187		1 563		3 368		5 170						
														TA24693
4900 Mill Str	eet, Suite	3, Reno, NV 89	9502						Rep	ort # 38454-R01.	A		$P_{\hat{5}}$	Page 2 of 2
	OIIIC cubic meter 67 67 67 67 67 67 67 67 1100 1 100 1 100	Spores / % of cubic meter 040 67 5% 67 5% 67 5% 67 5% 93 6% 93 6% 1100 77% 133 6% 1434 1	OIIICe DIIIIIg I Spores / % of Spores / 67 5 % Spores / 67 5 % 200 67 5 % 200 40 3 % 13 67 5 % 67 67 5 % 67 93 6 % 27 93 6 % 27 93 6 % 27 1100 77 % 800 1 13 67 1 13 67 1 13 67 1 13 67 1 13 67 1 13 67 93 6 % 27 93 6 % 27 93 6 % 27 93 13 67 1 1434 1187 1 1434 1187	e DIMING KIII % of Spores / % of % of Spores / % of 5 % Spores / % of 5 % 200 17 % 3 % 13 1 % 5 % 67 6 % 77 % 800 67 % 6 % 27 2 % 6 % 27 2 % 6 % 27 2 % 6 % 27 2 % 6 % 27 2 % 6 % 27 2 % 6 % 13 1 % 13 1 % 1 % 6 % 27 2 % 6 % 27 2 % 6 % 1 187 1 eet, Suite 3, Reno, NV 89502 8502		Auditorium f Spores / % of k Spores / % of	Auditorium f Spores / % of k Spores / % of	AuditoriumBackground, KearfSpores/ $%$ offSpores/ $%$ ofkSpores/ $%$ ofk20013 %k20013 %k20013 %k27014 %k37013 %k27013 %k13 $<1%$ k21013 %k13 $<1%$ k13	Auditoriumbackground, KearfSpores/% ofSpores/% ofSpores/Spores/% ofSpores/Spores/% ofSpores/ <td>Audutortum Background, Kear Background, Kear Background, Fear Background, Fear</td> <td>Audutortum Background, Kear Background, Kear Background, Fear Background, Fear</td> <td>AuditoriumBackground, KearBackground, KearBackground, KearfSpores/% ofSpores/% ofkSpores/% ofSpores/% ofkbit metertotalcubic meter$67$$67$k20013 %200$6\%$$470$$13\%$k20013 %200$6\%$$470$$13\%$k27017 %$470$$14\%$$230$k27013 %$21\%$$230$$13$k27013$<1\%$$230$k870$56\%$$2200$$6\%$$3800$k21013$<1\%$$21\%$$230$k1313$<1\%$$230$$93$k1313$<1\%$$270$$93$k13$<1\%$$36\%$$53$k13$<1\%$$36\%$$53$k13$<1\%$$36\%$$53$k13$<1\%$$36\%$$53\%$k13$<1\%$$36\%$$53\%$k13$<1\%$$36\%$$53\%$k13$<1\%$$36\%$$53\%$k13$<1\%$$36\%$$53\%$k13$<1\%$$36\%$$53\%$k13$<1\%$$36\%$$53\%$k13$<1\%$$13\%$$13\%$k13$13$$13\%$$13\%$</td> <td>Audutortum Background, Kear Background, Kear Background, Fear Background, Fear</td> <td>Autonom Background, reat Background, reat Fout 1 Spores/ % of Spores/ % of Spores/ % of 1 Bob metric (ual) Bobres/ (ual) Bobres/ % of Spores/ % of 1 Bob 1% 0 0% 1% 0 0% 0 0% 2 1% 1% 0 0% 1% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0</td>	Audutortum Background, Kear Background, Kear Background, Fear Background, Fear	Audutortum Background, Kear Background, Kear Background, Fear Background, Fear	AuditoriumBackground, KearBackground, KearBackground, KearfSpores/% ofSpores/% ofkSpores/% ofSpores/% ofkbit metertotalcubic meter 67 67 k20013 %200 6% 470 13% k20013 %200 6% 470 13% k27017 % 470 14% 230 k27013 % 21% 230 13 k27013 $<1\%$ 230 k870 56% 2200 6% 3800 k21013 $<1\%$ 21% 230 k1313 $<1\%$ 230 93 k1313 $<1\%$ 270 93 k13 $<1\%$ 36% 53 k13 $<1\%$ 36% 53 k13 $<1\%$ 36% 53 k13 $<1\%$ 36% 53% k13 $<1\%$ 13% 13% k13 13 13% 13%	Audutortum Background, Kear Background, Kear Background, Fear Background, Fear	Autonom Background, reat Background, reat Fout 1 Spores/ % of Spores/ % of Spores/ % of 1 Bob metric (ual) Bobres/ (ual) Bobres/ % of Spores/ % of 1 Bob 1% 0 0% 1% 0 0% 0 0% 2 1% 1% 0 0% 1% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0

Chain-of-Custody Form		Natural Link MOLD LAB	JD LAB 1990 Mill Street Suite 3 Reno, NV 89502	Street 3 89502
Account name: FCG Environmental (Forbess Consulting Group, Inc.) Sampling date $(a - 30 - 1/6)$ Submitter: Al	Submitter: Alan Forbess/Dana Stephens/Bill Miller	sill Miller	(866) 252-6653 (866) 252-MOLD	AOLD
Project / P.O. Lotte D Goleta -/ Phone: 805/646-1995	6-1995	с.	Phone (775) 356-6653 Fax (775) 356-6639	lone (775) 356-6653 Fax (775) 356-6639
Slett Hallester Ave Build	tran		info@naturallinkmoldlab.com	oldlab.com
Samula identification descrimina and/or location	Sample Analysis *		Alternative / additional	151
Dample neuringation, description, and or rocation	volume FME NFME FC	BC EC	analysis requested:	24hr 48hr
A-3 Black Com 3 (Ollies)	775			7
A. 4. W. Down & (NUMAR)				1
4-54 " Dames A	7			\mathbf{I}
A-SR (1) Dame SR (Hull Im)	7	,		
A-10 11 0-4	7			
4-7) " (Young	Ż			
4-8) ", Room X	7			\setminus
A-L'Eden Blde. A Kitchen	7			
A-Ollies W() GWCOllie	t t			
A-DUNING! " GVCCDillie Pm				
(*) FME, Fungal Microscopic Examination NFME, Non-Fungal Microscopic Exam	icroscopic Exam FC, Fungal Culture	il Culture BC, Bacterial Culture	al Culture EC, E.coli (coliforms) ID	oliforms) ID
Submitter's Date 11/10 R	Receiver's	C. LU nett	Date <u>61</u> / <u>6</u> Time 6:24	a <u>1/20/ ro</u>
	Receiver's			1
Dignature and pure and pure and pure and pure and pure pure pure pure pure pure pure pure	Dignature		· •	
Lab use:	*		Control #: 38454	tst .
Page of	Natu	al Link MOLD LAB, Inc	Natural Link MOLD LAB, Inc. is a Nevada Corporation (v 4.0) © 2004	v 4.0) © 2004

Autural Link MOLD LAB 4900 Mill Street Suite 3 Suite 3 Reno, NV 89502	Iding Group, Inc.) (866) 252-6653 Submitter: Alan Forbess/Dana Stephens/Bill Miller (866) 252-MOLD Phone: 805/646-1995 Phone (775) 356-6639 Phone: 805/646-1995 Fax (775) 356-6639 Info@naturallinkmoldlab.com Info@naturallinkmoldlab.com	Sample FME NF	at cill trattion to 1	aelohund -Faot : +		E.C	Date //// Receiver's Note O//20/16 Time #: (V/am m) Signature N. Date /// Date /// Receiver's Date /// Time : am pm Signature am pm Signature im pm	Control#: 38454
Chain-of-Custody Form	Account name: FCG Environmental (Forbess Consulting Group, Inc.) Sampling date (e-30 - //e Project / P.O. C. L. C.	Sample identification, description, and/or location	H-Huditatium Black OS-1, Outoid & Back	05-2, Outsiele/Backa		(*) FME, Fungal Microscopic Examin	Submitter's Signature Submitter's Signature	Lab use:

Natural Link MOLD LAB

Analytical Laboratory Report

Bioaerosol, non-culturable	Fungal Microscopic Exam	38455-R01
Tape Sample	Fungal Microscopic Exam	38455-R02

FINAL REPORT

Project/PO: City of Goleta-1 / 5679 Hollister Ave, Building B

Control ID # 38455 Received: 07-05-2016

July 05, 2016

Sem About Sean P. Abbott, Ph.D. Analytical Director, Natural Link MOLD LAB, Inc. AIHA (EMPAT) Lab ID 162969 Texas Department of State Health Services, Mold Analysis Laboratory License Number: LAB0146

Report submitted to:

Dana Stephens FCG Environmental 1009 Mercer Avenue Ojai, California 93023

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38455
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building B	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: B-Office, Bldg B, Office; Allergenco-D Spore-trap; 75L; 6/30/2016 [S142996AA100118]

<u>Fungi Identified</u>	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	55	730
Basidiospores	35	470
Ascospores	15	200
Penicillium/Aspergillus	5	67
Smuts/Myxomycetes	5	67
Alternaria	4	53
Aureobasidium	2	27
Ulocladium	2	27
TOTAL	123	1 641
Other Airborne Particles Hyphal fragments Pollen Insect/arthropod parts	Detected /None Detected Detected None Detected None Detected	<u>Particle Density (1-5)</u>
Fiberglass particles Total biological particles Total non-biological particles	None Detected	3 3

Summary of Findings

Natural Link **MOLD**

LAB

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38455-R01A).

Report #:38455-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Alat

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38455
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building B	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: B-9A-PD, Bldg B, Rm 9 (Classroom); Allergenco-D Spore-trap; 75L; 6/30/2016 [S142997AA100119]

<u>Fungi Identified</u>	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	167	2 200
Basidiospores	55	730
Ascospores	10	130
Penicillium/Aspergillus	5	67
Alternaria	2	27
Chaetomium	1	13
Smuts/Myxomycetes	1	13
Unidentified conidia	1	13
TOTAL	242	3 193
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38455-R01A).

Report #:38455-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

2

Natural Link MOLD LAB

Natural Link MOL	D LAB		Fungal Microscopic Exam
			Bioaerosol, non-culturable
Account Name: FCG	Environmental		Control ID #: 38455
Project PO: City of	of Goleta-1 / 5679 H	Hollister Ave, Building B	Date Received: 07-05-2016
Submitter: Dana	Stephens		Date Reported: 07-05-2016
Sample Identification:	B-10A, Bldg B, Rm [S142998AA100120	10A, (Support Svcs); Allergenco-D Spore	-trap; 75L; 6/30/2016
Fungi Identified		<u>Sample Count (spores/sample)</u>	<u>Calculated Count (spores/m³)</u>
Cladosporium		95	1 300
Basidiospores		10	130
Ascospores		5	67
Smuts/Myxomycetes		2	27
Alternaria		1	13
TOTAL		113	1 537
Other Airborne Particles Hyphal fragments Pollen Insect/arthropod parts Fiberglass particles		<u>Detected /None Detected</u> Detected None Detected None Detected None Detected	<u>Particle Density (1-5)</u>
Total biological particles Total non-biological particle	les		33

Summary of Findings

• Dominant fungal spores detected on the sample: Cladosporium.

Sensitivity: 13 spores/cubic meter.

See Summary Table (38455-R01A). ٠

Report #:38455-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Altot

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

3

Analytical Laboratory Report

Natural Link MO	LD LAB		Fungal Micros	scopic Exam
			Bioaerosol, no	on-culturable
Account Name: FCG	Environmental		Control ID #:	38455
Project PO: City	of Goleta-1 / 5679 Hollister	r Ave, Building B	Date Received:	07-05-2016
Submitter: Dana	a Stephens		Date Reported:	07-05-2016
Sample Identification:	B-10B, Bldg B, Rm 10B (EH [S142999AA100121]	S Classroom); Allergenco-D	Spore-trap; 75L; 6/30/2016	
Fungi Identified	Samp	le Count (spores/sample)	Calculated Cou	<u>int (spores/m³)</u>
Cladosporium		50		670
Penicillium/Aspergillus		42		560
Basidiospores		25		330
Ascospores		5		67
Alternaria		4		53
Smuts/Myxomycetes		2		27
Unidentified conidia		2		27
Aureobasidium		1		13
TOTAL		131		1 747
Other Airborne Particle	<u>s</u> <u>Detec</u>	cted /None Detected	Particle De	<u>nsity (1-5)</u>
Hyphal fragments		Detected		
Pollen		None Detected		
Insect/arthropod parts		None Detected		
Fiberglass particles		None Detected		
Total biological particles			4	
Total non-biological parti	cles		4	ł

Summary of Findings

• Dominant fungal spores detected on the sample: Cladosporium.

٠ Sensitivity: 13 spores/cubic meter.

See Summary Table (38455-R01A). ٠

Report #:38455-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sem Altott

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

4

Analytical Laboratory Report

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38455
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building B	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: B-11A-1A, Bldg B (Classroom); Allergenco-D Spore-trap; 75L; 6/30/2016 [S143000AA100122]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	65	870
Penicillium/Aspergillus	30	400
Basidiospores	15	200
Ascospores	10	130
Alternaria	5	67
Aureobasidium	2	27
Epicoccum	1	13
Smuts/Myxomycetes	1	13
Torula	1	13
TOTAL	130	1 733
Other Airborne Particles Hyphal fragments	Detected /None Detected Detected	Particle Density (1-5)
Pollen Insect/arthropod parts	Detected None Detected	
Fiberglass particles	None Detected	
Total biological particles		4
Total non-biological particles		4

Summary of Findings

Natural Link **MOLD**

LAB

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38455-R01A).

Report #:38455-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Alat

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

		Bioaerosol, non-culturable
Account Name: FCG	Environmental	Control ID #: 38455
Project PO: City c	of Goleta-1 / 5679 Hollister Ave, Building B	Date Received: 07-05-2016
Submitter: Dana	Stephens	Date Reported: 07-05-2016
Sample Identification:	B-11B, Bldg B, Goleta II Center Office; Allergenco-D Sp [S143001AA100123]	pore-trap; 75L; 6/30/2016
<u>Fungi Identified</u>	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	55	730
Basidiospores	35	470
Ascospores	10	130
Penicillium/Aspergillus	5	67
Smuts/Myxomycetes	3	40
Alternaria	2	27
Aureobasidium	1	13
Beltrania	1	13
Botrytis	1	13
Oidium	1	13
Torula	1	13
Ulocladium	1	13
TOTAL	116	1 542
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	None Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	3
Total biological particles Total non-biological particl	les	3
rotar non otorogical parties	145	

Summary of Findings

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38455-R01A).

Report #:38455-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sem Altott

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

6

Analytical Laboratory Report

Fungal Microscopic Exam Bioaerosol, non-culturable

Natural Link MOLD LAB

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38455
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building B	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: B-12A-1B, Bldg B (Classroom); Allergenco-D Spore-trap; 75L; 6/30/2016 [S143002AA100124]

<u>Fungi Identified</u>	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	60	800
Basidiospores	30	400
Ascospores	5	67
Penicillium/Aspergillus	5	67
Smuts/Myxomycetes	4	53
Alternaria	2	27
Pithomyces	2	27
Zygophiala	2	27
Stemphylium	1	13
Unidentified conidia	1	13
TOTAL	112	1 494
Other Airborne Particles Hyphal fragments Pollen Insect/arthropod parts Fiberglass particles	Detected /None Detected Detected Detected None Detected None Detected	<u>Particle Density (1-5)</u>
Total biological particles Total non-biological particles		33

Summary of Findings

Natural Link **MOLD**

LAB

• Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38455-R01A).

Report #:38455-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sem About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38455
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building B	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: B-14B, Bldg B, Rm 14B (Health Svcs); Allergenco-D Spore-trap; 75L; 6/30/2016 [S143003AA100125]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	50	670
Basidiospores	10	130
Ascospores	1	13
Beltrania	1	13
Ochroconis	1	13
Ulocladium	1	13
TOTAL	64	852
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	None Detected	
Pollen	Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

Natural Link MOLD LAB

• See Summary Table (38455-R01A).

Report #:38455-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Natural Link MOLD INAB

Summary Table

Fungal Microscopic Examination Bioaerosol, non-culturable

Account Name FCG Environmental

Project/P.O.: City of Goleta-1 / 5679 Hollister Ave, Building B

Date Reported 07-05-2016 **Control #** 38455

rojectro CI	City of Goleta-1 / 20/9 Hollister Ave, Building D	ra-1/			ve, Dullul	IIg D				Dale	Date Keporteu		0107-00-10			00400
Sample ID	B-Office, Bldg B, Office	sldg B, e	B-9A-PD, Bldg B, Rm 9 (Classroom)	Bldg 9 m)	B-10A, Bldg B Rm 10A, (Support Svcs)	dg B, A, Svcs)	B-10B, Bldg B, Rm 10B (EHS Classroom)	dg B, EHS m)	B-11A-1A, Bldg B (Classroom)	, Bldg oom)	B-11B, Bldg B, Goleta II Center Office	dg B, Center e	B-12A-1B, Bldg B (Classroom)	Bldg oom)	B-14B, Bldg B, Rm 14B (Health Svcs)	dg B, Iealth
Fungi ID	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total
Alternaria	53	3 %	27	$1 \ \%$	13	1 %	53	3 %	67	4 %	27	2 %	27	2 %		
Ascospores	200	$12 \ \%$	130	4 %	67	4 %	67	4 %	130	8 %	130	8 %	67	4 %	13	2 %
Aureobasidium	27	2 %					13	$1 \ \%$	27	$2 % = 2 % (2 + 1)^{2}$	13	$1 \ \%$				
Basidiospores	470	29 ~%	730	23 %	130	8 %	330	19 %	200	$12 \ \%$	470	30~%	400	27 %	130	15 %
Beltrania											13	1 %			13	2 %
Botrytis											13	1 %				
Chaetomium			13	< 1%												
Cladosporium	730	44 %	2 200	69 %	1 300	85 %	670	38 %	870	50~%	730	47 %	800	54 %	670	<i>79 %</i>
Epicoccum									13	$1 \ \%$						
Ochroconis															13	2 %
Oidium											13	1 %				
Penicillium/Aspergillus	67	4 %	67	2 %			560	32 %	400	23 %	67	4 %	67	4 %		
Pithomyces													27	2 %		
Smuts/Myxomycetes	67	4 %	13	< 1%	27	2 %	27	2 %	13	$1 \ \%$	40	3 %	53	4 %		
Stemphylium													13	$1 \ \%$		
Torula									13	$1 \ \%$	13	1 %				
Ulocladium	27	2 %									13	1 %			13	2 %
Unidentified conidia			13	< 1%			27	2 %					13	$1 \ \%$		
Zygophiala													27	2 %		
	1 641		3 193		1 537		1 747		1 733		1 542		1 494		852	
																TADACOO

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502

TA24690 Page 1 of 1

Report # 38455-R01A

Fungal Microscopic Exam Tape Sample

Submitter:	Dana Stephens	Date Reported:	07-05-2016
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building B	Date Received:	07-05-2016
Account Name:	FCG Environmental	Control ID #:	38455

Sample Identification: T-1, Bldg B, Rm 9APD (Sink Base Shelf); Tape Sample; 6/30/2016 [S143004AB20429]

Macroscopic Observations:

· Dark colored material present on sample.

Natural Link MOLD LAB

Density: Heavy.

Microscopic Observations:

- Fungal growth detected: Chaetomium.
 - Nearly confluent growth; spores, ascocarps and hyphae detected.

Summary of Findings

- · Dominant fungi detected on sample: Chaetomium
- See Summary Table (38455-R02A).

Report #: 38455-R02 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

RB20429

1

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general info from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

		in ungai initia over optice transminution	
Account Name FCG Project/P.O.: City c	FCG Environmental City of Goleta-1 / 5679 Hollister Ave, Building B	Date Reported 07-05-2016 Control #	1# 38455
Extent of Biological Activity	T-1, Bldg B, Rm 9APD (Sink Base Shelf)		
	Tape Sample		
Level S Nearly confluent growth (81-100% cover)	Chaetomium		
Level 4 Extensive growth (61-80% cover)			
Level 3 Moderate amounts of growth (41-60% cover)			
Level 2 Limited growth (21-40% cover)			
Level 1 Sparse/minimal growth (1-20% cover)			
Comments			
Level 0 Miscellaneous Spores (<1% cover)			
Natural Link MOLD LAB, Inc., 490	Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502	Report # 38455-R02A	TB11891[b] Page 1 of 1

Summary Table Fungal Microscopic Examination

4900 Mill Street Suite 3 Reno, NV 89502

Natural Link MOLD LAB

129

•	Chain-of-Custody Form		Natural Link MOLD LAB	LD LAB 4900 Mill Sureet Suite 3 Reno. NV 89502	ll Street e 3 v 89502
≪ N	Account name: FCG Environmental (Forbess Consulting Group, Inc.) Sampling date 6.4.20.4.6. Submitter: Alan Fo	Submitter: Alan Forbess/Dana Stephens/Bill Miller	ll Miller	(866) 252-6653 (866) 252-MOLD	2-6653 MOLD
4	Project / P.O. Why of Goleta - / Phone: 805/646-1995	35	4	Phone (775 Fax (775	Phone (775) 356-6653 Fax (775) 356-6639
⊺ ¥	5679 Alleter Are Building	B		info@naturallinkmoldlab.com	ioldlab.com
S	Sample identification, description, and/or location	Ana	*	Alternative / additional	181
			קר	allary size tequesion.	24hr 48hr
- F	A THLEE- DIDAD WILLER	7 7			7
0	iy) Rem c	7			}
	3-10A - 11 Rm10A (Sugard Sugar)	5			7
	B-10B - ", OwlobEHS Marrien	Z			7
	1 AN	7			7
	3-11 B. 1a Enlota IT Conter OLLER				7
<u> </u>	B-Lad-10 " (daga and).	7			7
	B-14 B. 1. Rm 14 B (Health SVCS)	7			7
<u> </u>	T-1, BldgB, 2m 9APD (Sink Base Shelf)	ł			ł
		Ĵ			7
	(*) FME, Fungal Microscopic Examination NFME, Non Fungal Microscopic Exam	ppic Exam FC, Fungal Culture	Culture BC, Bacterial Culture	1	EC, E.coli (coliforms) ID
N N	Sübmitter's Date 22 100 Me Receiver's Signature Signature 11 Me Receiver's Signature	د ج ب ب	amot	Date O_1	01/02/10
N N	s Date	rt's re			am pm
	Lab use:	×	Co	Control #: 38455	155
Ъ.	Page — of	Natural	Link MOLD LAB, Inc.	Natural Link MOLD LAB, Inc. is a Nevada Corporation (v 4.0) © 2004	(v 4.0) © 2004
•					

Bioaerosol, non-culturable

FINAL REPORT

Project/PO: City of Goleta-1 / 5679 Hollister Ave, Building C

Control ID # **38456**

Received: 07-05-2016

July 05, 2016

Sean P. Abbott, Ph.D. Analytical Director, Natural Link MOLD LAB, Inc. AIHA (EMPAT) Lab ID 162969 Texas Department of State Health Services, Mold Analysis Laboratory License Number: LAB0146

Report submitted to:

Dana Stephens FCG Environmental 1009 Mercer Avenue Ojai, California 93023 4900 Mill Street Suite 3 Reno, NV 89502

Sam Alsott

38456-R01

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name: FCG Environmental		Control ID #:	38456
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building C	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: C-6, Bldg C, Classroom 6; Allergenco-D Spore-trap; 75L; 6/30/2016 [S143005AA100141]

LAB

Natural Link **MOLD**

Fungi Identified	<u>Sample Count (spores/sample)</u>	<u>Calculated Count (spores/m³)</u>
Cladosporium	100	1 300
Ascospores	22	290
Basidiospores	10	130
Alternaria	6	80
Penicillium/Aspergillus	5	67
Aureobasidium	4	53
Smuts/Myxomycetes	4	53
Botrytis	2	27
Epicoccum	1	13
Stemphylium	1	13
Trichocladium	1	13
TOTAL	156	2 039
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		4
Total non-biological particles		4

Summary of Findings

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38456-R01A).

Report #:38456-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Alat

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name	FCG Environmental	Control ID #:	38456
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building C	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: C-7, Bldg C, Classroom 7; Allergenco-D Spore-trap; 75L; 6/30/2016 [S143006AA100142]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	80	1 100
Ascospores	25	330
Penicillium/Aspergillus	10	130
Basidiospores	5	67
Alternaria	4	53
Aureobasidium	3	40
Ulocladium	2	27
Beltrania	1	13
Bipolaris/Drechslera	1	13
Epicoccum	1	13
Ochroconis	1	13
Smuts/Myxomycetes	1	13
Stachybotrys	1	13
Unidentified conidia	1	13
TOTAL	136	1 838
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		4
Total non-biological particles		4

Summary of Findings

- Dominant fungal spores detected on the sample: Cladosporium.
- Potentially significant/indicator fungi detected on sample include: Stachybotrys.
- Sensitivity: 13 spores/cubic meter.
- See Summary Table (38456-R01A).

Report #:38456-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sem Alat

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

2

Natural Link MOLD LAB

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name: FCG Environmental		Control ID #:	38456
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building C	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: C-8, Bldg C, Classroom 8; Allergenco-D Spore-trap; 75L; 6/30/2016 [S143007AA100143]

<u>Fungi Identified</u>	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	95	1 300
Aureobasidium	10	130
Basidiospores	10	130
Penicillium/Aspergillus	10	130
Alternaria	5	67
Ascospores	5	67
Smuts/Myxomycetes	5	67
TOTAL	140	1 891
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	Detected	
Fiberglass particles	None Detected	
Total biological particles		4
Total non-biological particles		5

Summary of Findings

Natural Link **MOLD**

LAB

• Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• Sample condition/limitations: Extremely high levels of non-biological particles may have reduced or affected the detection of small spores; calculated counts are approximate and the total number of spores present may have been underestimated due to this limitation.

• See Summary Table (38456-R01A).

Report #:38456-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Som About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name: FCG Environmental		Control ID #:	38456
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building C	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: C-10, Bldg C Annex, Classroom 10; Allergenco-D Spore-trap; 75L; 6/30/2016 [S143008AA100144]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	120	1 600
Ascospores	5	67
Aureobasidium	2	27
Arthrinium	1	13
Beltrania	1	13
Stemphylium	1	13
Trichocladium	1	13
Ulocladium	1	13
TOTAL	132	1 759
<u>Other Airborne Particles</u> Hyphal fragments Pollen	Detected /None Detected Detected Detected	<u>Particle Density (1-5)</u>
Insect/arthropod parts Fiberglass particles	Detected None Detected	
Total biological particles Total non-biological particles		3 4

Summary of Findings

· Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

Natural Link MOLD LAB

• See Summary Table (38456-R01A).

Report #:38456-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name:	FCG Environmental	Control ID #:	38456
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building C	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: C-11, Bldg C Annex, Clasroom 11; Allergenco-D Spore-trap; 75L; 6/30/2016 [S143009AA100145]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	90	1 200
Basidiospores	25	330
Penicillium/Aspergillus	15	200
Smuts/Myxomycetes	9	120
Alternaria	6	80
Ascospores	5	67
Rusts	3	40
Aureobasidium	2	27
Nigrospora	2	27
Ulocladium	2	27
Spegazzinia	1	13
Taeniolella	1	13
Unidentified conidia	1	13
TOTAL	162	2 157
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	Detected	
Fiberglass particles	None Detected	
Total biological particles		4
Total non-biological particles		4

Summary of Findings

Natural Link **MOLD**

LAB

• Dominant fungal spores detected on the sample: Cladosporium.

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38456-R01A).

Report #:38456-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Altott

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name: FCG Environmental		Control ID #:	38456
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building C	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: C-12, Bldg C Annex, Classroom 12; Allergenco-D Spore-trap; 75L; 6/30/2016 [S143010AA100146]

Fungi Identified	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	115	1 500
Ascospores	15	200
Basidiospores	15	200
Penicillium/Aspergillus	10	130
Oidium	4	53
Smuts/Myxomycetes	4	53
Scopulariopsis	3	40
Alternaria	2	27
Unidentified conidia	2	27
Epicoccum	1	13
Rusts	1	13
Stemphylium	1	13
Trichocladium	1	13
TOTAL	174	2 282
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		4

Summary of Findings

Natural Link **MOLD**

LAB

• Dominant fungal spores detected on the sample: Cladosporium.

- Sensitivity: 13 spores/cubic meter.
- See Summary Table (38456-R01A).

Report #:38456-R01 Analysis Date: 07-05-2016 Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam Altott

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Fungal Microscopic Exam Bioaerosol, non-culturable

Account Name	FCG Environmental	Control ID #:	38456
Project PO:	City of Goleta-1 / 5679 Hollister Ave, Building C	Date Received:	07-05-2016
Submitter:	Dana Stephens	Date Reported:	07-05-2016

Sample Identification: C-13, Bldg C Annex, Classroom 13; Allergenco-D Spore-trap; 75L; 6/30/2016 [S143011AA100147]

<u>Fungi Identified</u>	Sample Count (spores/sample)	<u>Calculated Count (spores/m³)</u>
Cladosporium	50	670
Ascospores	15	200
Basidiospores	10	130
Smuts/Myxomycetes	5	67
Oidium	2	27
Alternaria	1	13
Beltrania	1	13
Spegazzinia	1	13
Ulocladium	1	13
Unidentified conidia	1	13
TOTAL	87	1 159
Other Airborne Particles	Detected /None Detected	Particle Density (1-5)
Hyphal fragments	Detected	
Pollen	Detected	
Insect/arthropod parts	None Detected	
Fiberglass particles	None Detected	
Total biological particles		3
Total non-biological particles		3

Summary of Findings

• Dominant fungal spores detected on the sample: Cladosporium.

LAB

Natural Link **MOLD**

• Sensitivity: 13 spores/cubic meter.

• See Summary Table (38456-R01A).

Report #:38456-R01 Analysis Date: 07-05-2016

Laboratory Results authorized by Sean P. Abbott, Ph.D., Analytical Director

Sam About

Natural Link MOLD LAB, Inc. reports sample results as a record of the microbes identified by our analytical staff. Any guidance given with regards to sampling methods, interpretation of results, remediation, health effects, or other information given to the client, beyond microbial identification, is given as general information from published sources and is not an extension of liability to Natural Link MOLD LAB, Inc. Natural Link MOLD LAB, Inc. establishes responsibility over analysis completed in the laboratory but cannot establish responsibility for activities completed in the field by the client, other personnel associated with the samples submitted, or other activities beyond the laboratory. All reports are confidential and are not to be reproduced, except in whole, without the permission of Natural Link MOLD LAB, Inc.

Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502 phone: (775) 356-6653

Natural Link MOLD		LAB										Ъ	Su Ingal Mice Bioa	mm: roscop erosol	Summary Table Fungal Microscopic Examination Bioaerosol non-culturable
Account Name FC Project/P.O.: Cit	FCG Environmental City of Goleta-1 / 56	onment eta-1 / :	FCG Environmental City of Goleta-1 / 5679 Hollister Ave, B	ister A	ve, Buildi	uilding C				Date	Date Reported		07-05-2016	Con	Control # 38456
Sample ID	C-6, Bldg C, Classroom 6	c, C, om 6	C-7, Bldg C, Classroom 7	, m 7	C-8, Bldg C, Classroom 8	е 8	C-10, Bldg C Annex, Classroom 10	, nnex, m 10	C-11, Bldg C Annex, Clasroom 11	, vnnex, m 11	C-12, Bldg C Annex, Classroom 12	, nnex, m 12	C-13, Bldg C Annex, Classroom 13	, nnex, m 13	
Fungi ID	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	Spores / cubic meter	% of total	
Alternaria	80	4 %	53	3 %	67	4 %			80	4 %	27	$1 \ \%$	13	$1 \ \%$	
Arthrinium							13	$1 \ \%$							
Ascospores	290	$14 \ \%$	330	$18 \ \%$	67	4 %	67	4 %	67	3 %	200	9 %	200	17 %	
Aureobasidium	53	3 %	40	2 %	130	7 %	27	2 %	27	1~%					
Basidiospores	130	6 %	67	4 %	130	7 %			330	15 %	200	9 %	130	$11 \ \%$	
Beltrania			13	$1 \ \%$			13	$1 \ \%$					13	$1 \ \%$	
Bipolaris/Drechslera			13	$1 \ \%$											
Botrytis	27	$1 \ \%$													
Cladosporium	$1 \ 300$	64 %	1 100	60~%	1 300	69 %	1 600	91~%	1 200	56 %	1 500	66%	670	58 %	
Epicoccum	13	$1 \ \%$	13	$1 \ \%$							13	1~%			
Nigrospora									27	$1 \ \%$					
Ochroconis			13	$1 \ \%$											
Oidium											53	2 %	27	2 %	
Penicillium/Aspergillus	67	3 %	130	7 %	130	7 %			200	<i>%</i> 6	130	6 %			
Rusts									40	2 %	13	$1 \ \%$			
Scopulariopsis											40	2 %			
Smuts/Myxomycetes	53	3 %	13	1 %	67	4 %			120	6%	53	2 %	67	6 %	
Spegazzinia									13	1%			13	1 %	
Stachybotrys			13	1 %											
Stemphylium	13	$1 \ \%$					13	$1 \ \%$			13	$1 \ \%$			
Taeniolella									13	$1 \ \%$					
Trichocladium	13	$1 \ \%$					13	1 %			13	1~%			
Ulocladium			27	1 %			13	$1 \ \%$	27	1 %			13	$1 \ \%$	
Unidentified conidia			13	1 %					13	1 %	27	1 %	13	$1 \ \%$	
	2 039		1 838		1 891		1 759		2 157		2 282		1 159		
Natural Link MOLD LAB, Inc., 4900 Mill Street, Suite 3, Reno, NV 89502	, 4900 Mill St	reet, Suite	3, Reno, NV 8	9502						${ m Rep}$	Report # 38456-R01A	-R01A			TA24694 Page 1 of 1

139

Chain-of-Custody Form		Natural Link N	Natural Link MOLD LAB 2900 Mill Street Suite 3 Reno. NV 89502] Suret e 3 : 89502
Account name: FCG Environmental (Forbess Consulting Group, Inc.) Sampling date 6.30 - 1/6 Submitter: Alan Forb Project / P.O. 60646-1995	<u>ů</u>	s/Bill Miller	(866) 252-6653 (866) 252-MOLD Phone (775) 356-6633 Fax (775) 356-6639 info@naturallinkmoldlab.com	(66) 252-6653 () 252-MOL/D Phone (775) 356-6653 Fax (775) 356-6639 aturallinkmoldlab.com
Sample identification, description, and/or location	Sampte FME NFME	Analysis *	Alternative / additional analysis requested:	RUSH 24hr 48hr
C-Lo. BULOC Delass Le				
	(
0-7 ··· · · · · · ·	(Y
0-10 " Annex. " 10		,		\mathbf{X}
	(1			
				\mathbf{X}
(*) FME, Fungal Microscopic Examination NFME. Non-Fungal Microscopic Exam FC, Fungal Culture BC, Bacterial Culture EC, E.coli (coliforms) ID	Aicroscopic Exam FC, Fu	ngal Culture BC, B	acterial Culture EC, E.coli ((coliforms) ID
Submitter's Date 1/L/10 Science Date 7/L/Date 7/L/Long Commence	Receiver's Signature	Ferring . A Junet	L Date 4	01 105/16 M :25 (am) pm
s Date _/_/	Receiver's Signature		Date : Time :	am pm
Lab use:			Control #: 3&1	38456
Page of	2	atural Link MOLD LA	Natural Link MOLD LAB, Inc. is a Nevada Corporation (v 4.0) © 2004	(v 4.0) © 2004

Attachment 3

Asbestos Air Sample Results

Airborne Fiber Analysis

NIOSH 7400 Method, Issue 2, 15 August 1994, counting rules 'A'

FCG Environmental Alan Forbess 1009 Mercer Avenue Ojai, CA 93023						Client ID: Report Num Date Receive Date Analyz Date Printed First Report	ed: 07/0 ed: 07/0 l: 07/0	9564 6/16 7/16 7/16
Job ID/Site: City of Goleta-01; Goleta Val		munity Center, :	5679 Holliste	r, Goleta		FALI Job ID:7238Total Samples Submitted:19Total Samples Analyzed:19		
Sample ID	Lab Number	Date Collected	Volume (L)	Fibers	Fields	Fibers/mm ²	LOD F/cc	Fibers/cc
A-1	50999446	06/30/16	1200.0	6.5	100	8.2	0.002	0.003
A-2	50999447	06/30/16	1200.0	18.5	100	23.5	0.002	0.008
A-3	50999448	06/30/16	1200.0	6.5	100	8.2	0.002	0.003
A-4	50999449	06/30/16	1200.0	3.0	100	<7.0	0.002	< 0.002
A-5	50999450	06/30/16	1200.0	0.5	100	<7.0	0.002	< 0.002
A-6	50999451	06/30/16	1210.0	6.5	100	8.2	0.002	0.003
A-7	50999452	06/30/16	1200.0	2.0	100	<7.0	0.002	< 0.002
A-8	50999453	06/30/16	1220.0	1.0	100	<7.0	0.002	< 0.002
A-9 A-10	50999454 50999455	06/30/16	1200.0	7.0	100	8.9	0.002	0.003
A-10	20999402	00/30/10	1200.0	12.0	100	15.2	0.002	0.005

Final Report

Airborne Fiber Analysis

NIOSH 7400 Method, Issue 2, 15 August 1994, counting rules 'A'

FCG Environmental Alan Forbess 1009 Mercer Avenue Ojai, CA 93023		Client ID: 7238 Report Number: A209564 Date Received: 07/06/16 Date Analyzed: 07/07/16 Date Printed: 07/07/16 First Reported: 07/07/16						
Job ID/Site: City of Gol	eta-01; Goleta Valley Co	omunity Center, :	5679 Hollister	r, Goleta			D: 7238 les Submitted les Analyzed:	: 19
Sample ID	Lab Number	Date Collected	Volume (L)	Fibers	Fields	Fibers/mm ²	LOD F/cc	Fibers/cc
A-11	50999456	06/30/16	1395.0	5.0	100	<7.0	0.002	< 0.002
A-12	50999457	06/30/16	1200.0	5.0	100	<7.0	0.002	< 0.002
A-13	50999458	06/30/16	1200.0	0.5	100	<7.0	0.002	< 0.002
A-14	50999459	06/30/16	1200.0	1.5	100	<7.0	0.002	< 0.002
A-15	50999460	06/30/16	1200.0	1.0	100	<7.0	0.002	< 0.002
A-16	50999461	06/30/16	1200.0	0.0	100	<7.0	0.002	< 0.002
A-17	50999462	06/30/16	1300.0	16.0	100	20.3	0.002	0.006
A-18	50999463	06/30/16	1600.0	1.0	100	<7.0	0.002	< 0.002
A-19	50999464	06/30/16	1700.0	1.0	100	<7.0	0.002	< 0.002

Final Report

Airborne Fiber Analysis

NIOSH 7400 Method, Issue 2, 15 August 1994, counting rules 'A'

Sample ID	Lab Number Date Collected Volume (L) Fibers	Fields Fibers/mm ² LOD	F/cc Fibe	rs/cc
Job ID/Site:	City of Goleta-01; Goleta Valley Comunity Center, 5679 Hollister, Goleta	FALI Job ID: Total Samples Sub Total Samples Ana		19 19
-J, -11200.		First Reported:	07/07/16	_
Ojai, CA 930	3	Date Analyzed: Date Printed:	07/07/16 07/07/16	
1009 Mercer	venue	Date Received:	07/06/16	
Alan Forbess		Report Number:	A209564	
FCG Environ	iental	Client ID:	7238	

Tiffani Ludd, Laboratory Supervisor, Rancho Dominguez Laboratory

Intralaboratory Relative Standard Deviation (Sr) per 100 graticule fields: 5 to 20 fibers: 0.329; >20 to 50 fibers: 0.354; >50 to 100 fibers: 0.316

Analytical results and reports are generated by Forensic Analytical Laboratories Inc. (FALI) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by FALI to any third party without prior written request from client. This report applies only to the sample(s) tested and results are based upon sample information provided by the client. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by FALI. The client is solely responsible for the use and interpretation of test results and reports requested from Forensic Analytical. This report must not be used by the client to claim product endorsement by NVLAP or any other agency of the U.S. Government. FALI is not able to assess the degree of hazard resulting from materials analyzed. FALI reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. Samples are not blank corrected unless otherwise noted.

Environmental Consulting Services Asbestos · Mold · Lead · Property Assessment

Pglof 3

Asbestos Air Sample Log

Date: 6-30-16	Client
Page Number: 1 - 3	Site Ac
FCG Project No: City of Goleta - 01	Work A
On-site Hygienist: WAM/AwF	Contra

Name: City of Goleta, GVCC Calibration: Rotometer Address: 5679 Hallister, Goleta Filter ECA: Area: Goleta Valley Community Field Area: 385 sq. mm. 0.007854 sq. mm. PCM Filter: 0.8 um., 25mm. Center actor: ----

Sample	Sample	Sample	Contractor		Tim	e	Flow	Rate (lif	ters/min.)	Volume Fibers per		Fibers per
ID	Туре	Location	Activity	Start	Stop	Total Min.	Start	Stop	Average	(liters)	Field	cc
A-1 .	Area (ambient)	Blagb-Rm. 12 A	NA	8:50	12:50	240	5	5	5	1200		
A-2	1.	11 - RM 11A		8:55	12:55	11	n	"	//	1200		
A-3		11 - 10B		9:00	13:00	/1	11	"	11	1200		
A-4		Blog C - RM		9:05	13:05	11	11	"	"	1200		
A-5		11 - RM 11 - 12		9:10	13:10	/1	11	//	11	1200		
A-6		11 - Rm		9:10	13:12	242	11	п	11	1210		
A-7		11 - RM		9:15	10:15	60	20	20	Z0	1200		
A-8	\vee	C-Annex Rm Portable 6	V	9:24	10:25	61	R.	1	л	1220		
	f-Custody		ered By: C	ourier	In-Pe	rson	Mail		FedEx	UPS	Other	
Receive	d By (Lab)	en For	Les.	F/E	Date: Date:	7/6/10	,		Time	e: 9125	A	

Analyzed By: William A. Miller, CSST-#07-4180-NIOSH 582 Cert. No. 582-022508-001

Date:

Time:

Environmental Consulting Services

Asbestos · Mold · Lead · Property Assessment

Pg 2 of 3	Asbestos Air Sa	mple Log	
Date:	Client Name:	Calibration: Rotometer	
Page Number:	Site Address:	Filter ECA: 385 sq. mm.	
FCG Project No:	Work Area:	Field Area: 0.007854 sq. mm.	
On-site Hygienist: WAM	Contractor:	PCM Filter: 0.8 um., 25mm.	

Sample	Sample	Sample	Contractor		Tim		Flow	Rate (lif	ters/min.)	Volume	Fibers per	Fibers per
ID	Type	Location	Activity	Start	Stop	Total Min.	Start	Stop	Average	(liters)	Field	cc
A-9.	Area (ambicat)	C-Annex Rm 7	NA	9:38	14:38	300	4	4	4	1200		
A-10		C-Annex		9:40	14:40	300	·J	n	11	1200		
A-11		Bug B- Km		9:45	11:18	93	15	15	15	1395		
A-12		GVCC - Dining Hol		9:49	11:09	80	/	n	11	1200		
A-13		Auditoriu	n	10:00	11:00	60	Z0	20	20	1200		
A-14		Rm.G		10:20	11:40	80	15	15	15	1200		
A-15		. Rm7		10:20	11:40	80	15	15	15	1200		
A-16	\vee	V Rm8	V	10:25	11:25	60	20	20	20	1200		
Chain-of-Custody Delivered By: Courier In-Person Mail FedEx UPS Other												
Analyzed	d By (Lab) d By: ₩₩	: Cart Han A. Miller, G 10. 582-022508-		Fle	Date: Date: Date:	7/6/	116		Time Time Time	e: 9129	- A2-	

NIOSH 582 Cert. No. 582-022508-001

Environmental Consulting Services Asbestos · Mold · Lead · Property Assessment

Pg	3q3	
----	-----	--

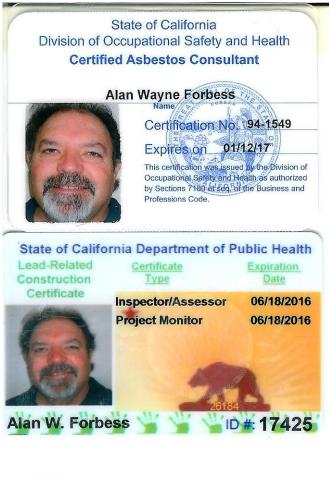
Asbestos Air Sample Log

Date:	Client Name:	Calibration: Rotometer
Page Number:	Site Address:	Filter ECA: 385 sq. mm.
FCG Project No:	Work Area:	Field Area: 0.007854 sq. mm.
On-site Hygienist: WAM	Contractor:	PCM Filter: 0.8 um., 25mm.

Sample	Sample	Sample	Contractor		Tim	ne	Flow	Rate (lit	ters/min.)	Volume	Fibers per	Fibers per
ID	Туре	Location	Activity	Start	Stop	Total Min.	Start	Stop	Average	(liters)	Field	cc
A-17.	Area	GVCC Rm. 1	NA	10:20	11:25	65	20	z٥	20	1300		
A-18		GVCC office	п	10:30	1]:50	80	20	20	20	1600 1700		
A-19	\bigvee	Blag B - Rm 13B	л	11:30	12:55	85	20	20	20	1700		
	,											
		·										
Chain-of-Custody Delivered By: Courier						erson	Mail		FedEx	UPS	Other	
Sampled By: Received By (Lab): Can Fie Analyzed By: Willight A: Miller, C33T #07-4160						7/6/1	6		Tim Tim Tim	e: 9:2	510-	

Forensic An	alytical Lab	oratories, Inc.	ርነት	y of	•			m (COC)		
Client No.: 7238			PO/Job#: Gol	leta -	01	Da	te:6/30	11/2		
FCG Environm		he e N	Turn Around Time: Same Day 1Day 2Day / 3Day / 4Day / 5Day							
(Forbess Cons 1009 Mercer A		Inc.)	PCM: TNIOSH 7400A / INIOSH 7400B I Rotometer							
Ojai, CA 93023										
Contact: Alan Forbess, B	ill Miller									
^{Phone:} (805) 646-1995	Fax: (80	□ TEM Bulk: □ Quantitative / □ Qualitative / □ Chatfield □ TEM Water: □ Potable / □ Non-Potable / □ Weight % □ TEM Microvac: □ Qual(+/-) / □ D5755(str/area) / □ D5756(str/mass)								
1		er@fcgenviro.com	IAQ Particle Identif Particle Identif	fication (TEM LAB)		PLM Opa			
Site: Goleta Valle Site Location: 5679	1 Commun	ity Center	Metals Analys	is: Meth	od:					
Site Location: 56 79	Holliste	r, Goleta	Analytes:							
Comments:	//0///	,			Report Via		🗖 E-Mail	🗖 Verbal		
	Data (• • •	·····		FOR AIR SAM	APLES OF	NLY	Sample		
Sample ID	Date / Time	Sample Location / D	escription	Туре	Time On/Off	Avg. LPM	Total Time	Area / Air Volume		
1-19	6/30/11	See Attached						Volume		
·····	Ai	see Attached r Sample L	19							
			7							
··· •		<u> </u>								
				<u>_</u>						
						-				
						-				
	+				=					
11			-	<u> </u>						
Sampled By:	1 Ta	len Date		16	Time:					
Shipped Via: 🗖 Fed Ex 🛛 🗖	DHL 🕯 🔲 UP	S 🔲 US Mail 🔲 Co	urier 🔲 Drop (Off 🗖	Other:					
Relinquished By:	Files			Relinquished	By:					
Date / Time: 7/5/	16	Date / Time:			Date / Time:					
Received By: Carrollo	Fle	Received By:			Received By:					
Date Time: 7/16/16 Condition Acceptable? BX Yes	9:25 M	 Date / Time: Condition Acceptable? 	Date / Time: ☐ Yes ☐ No Condition Acceptable? ☐ Yes ☐ No					D No		

San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph: (510)887-8828 * (800)827-3274 / Fax: (510)887-4218 Los Angeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 90221 / Ph: (310)763-2374 * (888)813-9417 / Fax: (310)763-8684 Las Vegas Office: 6765 S. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030


•

.

Attachment 4

FCG Inspector Certifications

Alan W. Forbess, Certifications

American Council for Accredited Certification

0804051

Certificate Number

hereby certifies that

Alan W. Forbess has met all the specific standards and qualifications of the re-certification process, including continued professional development, and is hereby re-certified as a

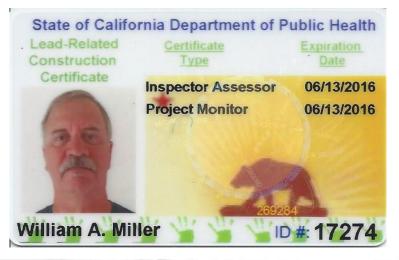
Council-certified Microbial Consultant

This certificate expires on June 30, 2016.

Charles Hiles. Charles F. Wiles, Executive Director

This certificate remains the property of the American Council for Accredited Certification.

FCG Staff Certifications – William A. Miller


State of California Division of Occupational Safety and Health Certified Site Surveillance Technician


William A Miller

Name Certification No. 07-4160 Expires on 03/22/17 This certification was issued by the Division of

Comparing the Division of Occupational Safety and Health as authorized by Sections 7180 et seq. of the Business and Professions Code.

Accredited Certification American Council for

hereby certifies that

Dana M. Stephens

has met all the specific standards and qualifications of the re-certification process, including continued professional development, and is hereby re-certified as a

CMI

Council-certified Microbial Investigator

This certificate expires on March 31, 2017.

Phartes Auhles

Charles F. Wiles, Executive Director

This certificate remains the property of the American Council for Accredited Certification.

1102018

Certificate Number

Attachment 3B

Binder of Special Studies

Sanitary Sewer Study

Utility Locating Radiography Potholing Mapping GPR

Date: Technician: Project Name: Project Address: C Below Project No.: October 12, 2016 Troy Douthitt Goleta Sewer Line - CCTV 5679 Hollister Ave. Goleta, CA 93117 16-1125

www.cbelow.com

1-888-90-BELOW

14280 Euclid Ave. Chino, CA 91710

REPORT SUMMARY

No. ¹	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S1 CO1	Sewer	Steel	51.60	4	Lateral on left at 0.60 ft. Lateral on right at 11.80 ft. Lateral on left at 14.20 ft. 17.00 ft. Lateral form above at 18.60 ft. Line heads West at 19.20 ft. Line turns left at 23.20 ft. Line ties into S1 CO2 at 29.10 ft. Camera underwater at 36.30 ft. Root intrusion at 39.80 ft. Lateral on right at 46.70 ft. Unable to push past 50.40 ft. due to blockage with debris. Heavy root intrusion at 51.30 ft.
S2 CO1 North	Sewer	Steel	2.40	4	"Y" intersection at 2.10 ft. Line reduces in size unable to push further past 2.40 ft.
S2 CO1 South	Sewer	Steel	60.40	4	Debris at 13.00 at bottom of line. Camera under water at 40.50 ft. unable to investigate line condition. Unable to push past 60.40 ft. due to debris blockage.
S3 CO1	Sewer	Steel	2.10	4	Unable to push past sweep.
S4 CO1	Sewer	Steel/ Clay	5.10	4	Lateral on right at entry point. Lateral on the right at 2.40 ft. Lateral from above at 5.10 ft.
S5 CO1	Sewer	Steel/Clay	45.40	4	Debris at bottom of line at 38.30 ft. Unable to push past 45.40 ft.
S6 CO1	Sewer	Clay	90.80	6	Lateral on left at 10.70 ft. Line changes to steel at "T" connection at 11.60 ft. Lateral on right at 11.30 ft. Root intrusion at 13.40 ft. 23.00 ft. 26.70 ft. 31.30 ft. 35.70 ft. Lateral from top left at 36.30 ft. Root intrusion at 37.20 ft. Line turns right at 42.40 ft. with root intrusion. Line drops at 45.50 ft with lateral on left. Line drops to second line at 49.20 ft. Camera under water at 89.50 ft. Unable to push past 90.80 ft. due to blockage

¹See schematic for video insertion points.

²Estimated pipe sizes are based on visual observations made during video inspection and may vary.

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S1 CO1	Sewer	Steel	51.60	4	Lateral on left at 0.60 ft. Lateral on right at 11.80 ft. Lateral on left at 14.20 ft. 17.00 ft.

Entry point overview

Lateral on left at 0.60 ft.

Typical clear line condition

Lateral on left at 14.20 ft.

Lateral on right at 11.80 ft.

Lateral on left at 17.00 ft.

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S1 CO1	Sewer	Steel	51.60	4	Lateral form above at 18.60 ft. Line heads West at 19.20 ft. Line turns left at 23.20 ft. Line ties into S1 CO2 at 29.10 ft. Root intrusion at 39.80 ft. Lateral on right at 46.70 ft.

Lateral form above at 18.60 ft.

Line turns left at 23.20 ft.

Root intrusion at 39.80 ft.

Line heads West at 19.20 ft.

Line ties into S1 CO2 at 29.10 ft.

Lateral on right at 46.70 ft.

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S1 CO1	Sewer	Steel	51.60	4	Unable to push past 50.40 ft. due to blockage with debris. Heavy root intrusion at 51.30 ft.

Unable to push past 50.40 ft. due to blockage with debris. Heavy root intrusion at 51.30 ft.

Unable to push past 50.40 ft. due to blockage with debris. Heavy root intrusion at 51.30 ft.

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S2 CO1 North	Sewer	Steel	2.40	4	"Y" intersection at 2.10 ft. Line reduces in size unable to push further past 2.40 ft.

Entry point overview

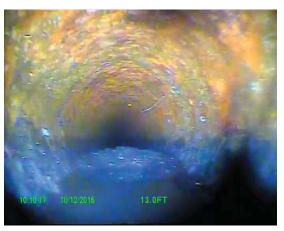
Entry point overview

"Y" intersection at 2.10 ft.

Line reduces in size unable to push further past 2.40 ft.

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S2 CO1 South	Sewer	Steel	60.40	4	Debris at 13.00 at bottom of line. Camera under water at 40.50 ft. unable to investigate line condition. Unable to push past 60.40 ft. due to debris blockage.

Entry point overview


Entry point overview

Typical clear line condition

Camera under water at 40.50 ft. unable to investigate line condition.

Debris at 13.00 at bottom of line.

Unable to push past 60.40 ft. due to debris blockage.

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S3 CO1	Sewer	Steel	2.10	4	Unable to push past sweep.

Entry point overview

Unable to push past sweep.

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S4 CO1	Sewer	Steel/ Clay	5.10	4	Lateral on right at entry point. Lateral on the right at 2.40 ft. Lateral from above at 5.10 ft.

Entry point overview

Lateral on right at entry point.

Entry point overview

Lateral on the right at 2.40 ft.

Lateral from above at 5.10 ft.

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S5 CO1	Sewer	Steel/Clay	45.40	4	Debris at bottom of line at 38.30 ft. Unable to push past 45.40 ft.

Entry point overview

Entry point overview

Typical line condition

Debris at bottom of line at 38.30 ft.

Unable to push past 45.40 ft.

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S6 CO1	Sewer	Clay	90.80	6	Lateral on left at 10.70 ft. Line changes to steel at "T" connection at 11.60 ft. Lateral on right at 11.30 ft. Root intrusion at 13.40 ft.

Entry point overview

Typical line condition

Typical line condition

Entry point overview

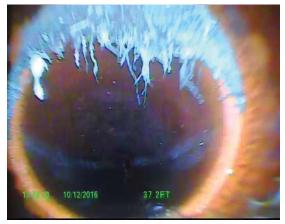
Typical line condition

Typical line condition

No.	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S6 CO1	Sewer	Clay	90.80	6	Root intrusion at 23.00 ft. 26.70 ft. 31.30 ft. 35.70 ft. Lateral from top left at 36.30 ft. Root intrusion at 37.20 ft.

Root intrusion at 23.00 ft.

Root intrusion at 31.30 ft.


Lateral from top left at 36.30 ft.

Root intrusion at 26.70 ft.

Root intrusion at 35.70 ft.

Root intrusion at 37.20 ft.

No) .	Utility	Material	Total Video Length (ft)	Pipe Size (in) ²	Line Condition
S CC		Sewer	Clay	90.80	6	Line turns right at 42.40 ft. with root intrusion. Line drops at 45.50 ft with lateral on left. Line drops to second line at 49.20 ft. Camera under water at 89.50 ft. Unable to push past 90.80 ft. due to blockage

Line turns right at 42.40 ft. with root intrusion.

Line drops to second line at 49.20 ft.

Unable to push past 90.80 ft. due to blockage

Line drops at 45.50 ft with lateral on left.

Camera under water at 89.50 ft.



Attachment 3C

Binder of Special Studies

Hazardous Materials Survey Report

HAZARDOUS MATERIALS SURVEY REPORT

5679, 5681, & 5689 Hollister Avenue Goleta, California 93117

November 2, 2016 Partner Project No. 16-170535.3

Prepared for

CITY OF GOLETA 130 CREMONA DRIVE, SUITE B GOLETA, CALIFORNIA 93117

November 2, 2016

Claudia Dato City of Goleta 130 Cremona Drive, Suite B Goleta, California 93117

Subject: Hazardous Materials Survey Report 5679, 5681, & 5689 Hollister Avenue Goleta, California 93117 Partner Project No. 16-170535.3

Dear Claudia Dato:

Partner Engineering and Science, Inc. (Partner) is pleased to provide the results of the *Hazardous Materials Survey* of the abovementioned address (the "subject property"). This survey was performed in general conformance with the scope and limitations as detailed in our fee proposal.

This survey included a site reconnaissance as well as sampling and analysis. An assessment was conducted, conclusions stated, and recommendations outlined, as necessary.

We appreciate the opportunity to provide environmental services to City of Goleta. If you have any questions concerning this report, or if we can assist you in any other matter, please contact me at 310.615.4500.

Sincerely,

Partner Engineering and Science, Inc.

Jenny Redlin, REPA Relationship Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Property Description	
1.2		
1.3	Methodology	1
2.0	HAZARDOUS MATERIALS SURVEY	5
2.1	Visual Inspection	5
2.2	Survey Results	6
3.0	CONCLUSION	3
4.0	LIMITATIONS	6
5.0	SIGNATURES OF PROFESSIONALS	7

APPENDICES

- Appendix A Laboratory Analysis and Chain-of-Custody, & XRF Data
- Appendix B Site Plan
- **Appendix C** Certifications
- **Appendix D** Photographic Documentation
- Appendix E Form 8552

1.0 INTRODUCTION

1.1 **Property Description**

Address:	5679, 5681, & 5689 Hollister Avenue, Goleta,		
	California		
Nature of Use:	Community Center/School/Daycare		
Number of Buildings:	Three		
Number of Floors:	One		
Surveyed By:	Freddy Torres, Inspector		
Assessment Date/Time:	October 20, 2016 11:00am		

1.2 Purpose and Scope

The purpose of this hazardous materials survey (survey) was to sample and analyze suspect asbestos-containing materials (ACM) and suspect lead-based paint (LBP) which could present an exposure risk during potential renovation activities.

Partner also conducted a visual inspection to review and identify current and/or past evidence of hydraulic lifts, mercury-containing equipment, fluorescent lights and ballasts, PCB- and chlorofluorocarbons (CFCs)-containing equipment, and other regulated materials that may be present in the building. The suspect materials sampled during the survey were limited to accessible areas within the interior and exterior of the building.

Multiple rooms in buildings two and three were unable to be accessed due to occupants. It should be noted that additional sampling may be required in these areas if additional materials are discovered during demolition.

1.3 Methodology

ASBESTOS

Suspect ACM were sampled according to the guidelines set forth in 40 CFR Part 763, and later analyzed using the Polarized Light Microscopy (PLM) method in accordance with the EPA reference method 600/R-93/116 for Determination of Asbestos in Bulk Building Materials.

The United States Environmental Protection Agency (USEPA) as set forth in 40 CFR 763, defines a homogeneous area as "an area of surfacing material, thermal system insulation material, or miscellaneous material that is uniform in color and texture." The regulation requires that a minimum number of representative samples be collected from each homogeneous area. If asbestos is identified in any samples from a homogeneous area, the entire homogeneous area is considered to contain asbestos.

The aforementioned testing and analytical constraints can affect the findings and recommendations of this survey.

Specifically, no assurance is given regarding the asbestos content of the samples beyond these parameters. Further investigation is not recommended unless the client can determine it is cost-effective to do so.

The ACM most likely to release asbestos fibers are those which are in a friable state. Friability describes the condition of asbestos. The definition of friable is any material, when dry, that is capable of being crumbled, pulverized or reduced to powder by hand pressure (40 CFR 763).

Non-friable sources of asbestos are materials containing cement or asphalt binder which may become friable and release fibers if the sources are exposed to actions such as abrasion, drilling, cutting, fracturing or hammering. Non-friable sources of asbestos do not typically pose a significant exposure risk if they remain in good condition and are not disturbed. During renovation or demolition activities, non-friable sources may become friable and thus may pose an exposure risk.

The PLM method is the most commonly used method to analyze building materials for the presence of asbestos. This method utilizes the optical properties of minerals to identify the selected constituent. The use of this method enables identification of the type and the percentage of asbestos in a given sample. The detection limit of the PLM method for asbestos identification is typically one percent (1%) asbestos.

The California Occupational Safety and Health regulations define asbestos-containing construction material (ACCM) as any material which contains greater than one-tenth of one percent (0.1%) asbestos. Materials containing "trace" amounts of asbestos are reported by the laboratory as <1% which could qualify as ACCM in the State of California. Further quantification is possible utilizing either Transmission Electron Microscopy (TEM) analysis or point counting via PLM.

LEAD-BASED PAINT

The subject property was visually inspected and potential LBP were identified. The painted/finished surfaces containing suspect LBP were analyzed and the data was recorded using a XRF.

Painted or varnished surfaces were analyzed for LBP using a hand-held XRF device. The XRF uses a Cadmium 109 (Cd) isotope radioactive source to 'excite' the atomic structure of painted surfaces. Once 'excited', lead (Pb) atoms emit unique x-ray fluorescence radiation energy. The radiation detector within the XRF then translates these x-rays into a quantitative measure of lead concentration. If present, the XRF will determine the amount of lead in paint with a 95% confidence level. The lead concentrations are reported in milligrams per square centimeter (mg/cm²).

Measurements were taken at locations representative of all painted or varnished surfaces for each different testing combination in the areas inspected. In order to obtain a reading, the XRF analyzer is placed with the face of the instrument flush against the surface to be tested. It is then held in place for the duration of the sample, approximately 4 to 16 source seconds, or until the measurement has reached the acceptable range of accuracy. The sampling time is dependent on the age of the radioactive source inside the XRF.

XRF analysis yields the total lead content of a painted surface, hereby not distinguishing between individual concentrations of painted layers. The XRF was calibrated with a National Institute of Standards and Testing (NIST) calibration surface prior to and post analysis of painted surfaces.

The subject property's orientation is described using HUD's recommended guidelines, assigning the letters A, B, C and D to each side. Side A corresponds to the main entrance of each building. The remaining side identifications are assigned in a clock-wise manner. Each tested component location is identified using the building's assigned letter as a reference point.

The HUD Guidelines for lead-containing paint require a lead hazard abatement activity in cases where lead content is above one half of one percent (0.5%) by weight or equal to or in excess of one milligram per square centimeter (1.0 mg/cm²). This requirement for lead hazard abatement only applies to housing that is administrated or funded by HUD. *Section 1017 of the HUD Guidelines, Residential LBP Reduction Act of 1992,* otherwise known as "Title X", defines a lead-based paint hazard as "any condition that causes exposure to lead that would result in adverse human health effects" resulting from lead-contaminated dust, bare, lead-contaminated soil, and/or lead-contaminated paint that is deteriorated or present on accessible, friction, or impact surfaces. Therefore, under Title X, intact LBP on most walls and ceilings would not be considered a "hazard", although the paint should be maintained and its condition monitored to ensure that it does not deteriorate and become a hazard.

In general, there are many other building materials which can contain lead in the average building. When conducting construction or demolition activities which disturb lead in any amount or create an exposure to workers, the employer is required to provide worker protection and conduct exposure assessments. Employers should consult Federal OSHA Regulations at 29 CFR 1926.62, "Lead in Construction" standards for complete requirements prior to construction or demolition activities.

Notification must be given to all contractors at the work site prior to the start of activities that may create a lead hazard. Characterization and disposal of lead-containing waste materials (LCWMs) must comply with federal, state and local authorities.

Contractors must maintain current licenses as required by applicable state or local jurisdictions for the removal, transport, disposal of LCWMs, or other regulated lead-based paint activities.

ADDITIONAL HAZARDOUS MATERIALS

The Environmental Protection Agency (EPA) regulates the management of hazardous waste through the Resource Conservation and Recovery Act (RCRA) Subtitle C (40 CFR Part 260). The RCRA hazardous waste program regulates commercial businesses and government facilities that generate, transport, treat, store, or dispose of hazardous waste.

A visual survey was conducted to evaluate the following hazardous materials in terms of presence, number, and configuration. An inventory was compiled for the various materials encountered.

- o Mercury light ballasts, fluorescent lights, mercury light switches, and thermostat bulbs.
- o Radioactive sources such as tritium-containing signage.
- PCB-containing equipment including elevator hoists, switching equipment and panels, electrical transformers, hydraulic lifts.
- CFC-containing equipment such as HVAC pumps and compressors.

2.0 HAZARDOUS MATERIALS SURVEY

2.1 Visual Inspection

During the course of the property visit, Mr. Freddy Torres, performed a review of accessible areas of the subject building for the presence of hazardous materials. The purpose of this assessment is for renovation purposes. Additional suspect hazardous materials could be present in inaccessible locations.

Partner did not attempt to disassemble mechanical equipment, open pipe chases, or assess materials within wall voids. Regardless of the thoroughness of a survey, the possibility exists that some areas containing hazardous materials such as ACM and/or LBP were not identified, inaccessible, or different from those materials at specific locations.

The subject property consists of three buildings constructed with exterior stucco finishes with interior plaster and drywall finishes with acoustic ceiling systems, and multiple vinyl floorings. The subject property was occupied at the time of the survey.

ASBESTOS

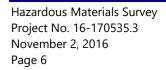
Suspect asbestos-containing materials observed at the time of the inspection were sampled and analyzed for asbestos content. The survey also established whether any of the substrates sampled could be considered friable and/or significantly damaged or capable of immediate worker exposure.

LEAD-BASED PAINT

Suspect painted surfaces observed at the time of the inspection were tested for lead content. The inspection also evaluated the condition of the painted surfaces sampled and whether they constituted a high risk of worker exposure. Painted or varnished surfaces were analyzed for LBP using a hand-held XRF device. The lead concentrations are reported in milligrams per square centimeter (mg/cm²). The Lead-based paint survey was limited to major building components within accessible areas only.

ADDITIONAL HAZARDOUS MATERIALS

A visual inspection was conducted to review and identify current and/or past evidence of hydraulic lifts, mercury-containing equipment, fluorescent lights and ballasts, PCB- and CFC-containing equipment, and any other regulated materials that may be present in the building.


2.2 Survey Results

ASBESTOS

A total of one hundred (100) bulk samples of presumed ACM were collected for analysis. The samples were grouped into homogeneous categories, assigned individual sample numbers, sealed in plastic bags, and transported under proper chain-of-custody documentation to LA Testing. LA Testing is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP No. 200346-0) for the analysis of asbestos bulk samples. Refer to Appendix A for analytical data.

Sample No.	Location	Description	Asbestos Content	Condition
1-01	Building One Room A3	Plaster	None Detected	Good
1-02	Building One Room A7	Plaster	None Detected	Good
1-03	Building One Room A8	Plaster	None Detected	Good
1-04	Building One Auditorium	Plaster	None Detected	Good
1-05	Building One Dining Room	Plaster	None Detected	Good
1-06	Building One Kitchen	Plaster	None Detected	Good
1-07	Building One Entry Way	Plaster	None Detected	Good
2-01	Building One Kitchen	Spray Applied Acoustic Ceiling Material	None Detected	Good
2-02	Building One Conference Room	Spray Applied Acoustic Ceiling Material	None Detected	Good
2-03	Building One Room A7	Spray Applied Acoustic Ceiling Material	None Detected	Good
2-04	Building One Room A5	Spray Applied Acoustic Ceiling Material	None Detected	Good
2-05	Building One Room A3	Spray Applied Acoustic Ceiling Material	None Detected	Good
2-06	Building One Room A2	Spray Applied Acoustic Ceiling Material	None Detected	Good
2-07	Building One Room A8	Spray Applied Acoustic Ceiling Material	None Detected	Good
3-01	Building One Stage	12x12 Acoustic Ceiling Tile	None Detected	Good
3-02	Building One Room A1	12x12 Acoustic Ceiling Tile	None Detected	Good

Analytical Results (ACM)

Sample No.	Location	Description	Asbestos Content	Condition
3-03	Building One Stage	12x12 Acoustic Ceiling Tile	None Detected	Good
4-01	Building One Dining Room	Beige 12x12 Vinyl Floor Tile plus Mastic	3% Chrysotile	Good
4-02	Building One Dining Room	Beige 12x12 Vinyl Floor Tile plus Mastic	4% Chrysotile	Good
4-03	Building One Dining Room	Beige 12x12 Vinyl Floor Tile plus Mastic	4% Chrysotile	Good
5-01	Building One Kitchen	White Speck Sheet Vinyl Flooring	None Detected	Good
5-02	Building One Kitchen	White Speck Sheet Vinyl Flooring	None Detected	Good
6-01	Building One Janitor Closet	White Speck Sheet Vinyl Flooring	None Detected	Good
6-02	Building One Janitor Closet	White Speck Sheet Vinyl Flooring	None Detected	Good
7-01	Building One Room 5	Beige Sheet Vinyl Flooring	None Detected	Good
7-02	Building One Room 5 HVAC Closet	Beige Sheet Vinyl Flooring	4% Chrysotile	Good
8-01	Building One Exterior North	Window Putty	None Detected	Good
8-02	Building One Exterior East	Window Putty	None Detected	Good
8-03	Building One Exterior South	Window Putty	None Detected	Good
9-01	Building One Exterior North	Stucco	None Detected	Good
9-02	Building One Exterior East	Stucco	None Detected	Good
9-03	Building One Exterior West	Stucco	None Detected	Good
10-01	Building One Roof North	Grey Roof Patch & Penetration Mastic	4% Chrysotile	Good
10-02	Building One Roof East	Grey Roof Patch & Penetration Mastic	4% Chrysotile	Good
10-03	Building One Roof South	Grey Roof Patch & Penetration Mastic	4% Chrysotile	Good
11-01	Building One Roof West	Brown Asphalt Roof Shingles	None Detected	Good
11-02	Building One Roof East	Brown Asphalt Roof Shingles	None Detected	Good
11-03	Building One Roof North	Brown Asphalt Roof Shingles	None Detected	Good

Hazardous Materials Survey Project No. 16-170535.3 November 2, 2016 Page 7

Sample No.	Location	Description	Asbestos Content	Condition
12-01	Building One Roof North	Grey Rolled on Roofing	None Detected	Good
12-02	Building One Roof East	Grey Rolled on Roofing	None Detected	Good
12-03	Building One Roof West	Grey Rolled on Roofing	None Detected	Good
13-01	Building Two Laundry Room	Plaster	None Detected	Good
13-02	Building Two Staff Room	Plaster	None Detected	Good
13-03	Building Two Room 9A	Plaster	None Detected	Good
13-04	Building Two Room 10A	Plaster	None Detected	Good
13-05	Building Two Room 10B	Plaster	None Detected	Good
13-06	Building Two Room 11A	Plaster	None Detected	Good
13-07	Building Two Staff Room	Plaster	None Detected	Good
14-01	Building Two Room 9A	2x4 Acoustic Ceiling Panel	None Detected	Good
14-02	Building Two Room 11A	2x4 Acoustic Ceiling Panel	None Detected	Good
14-03	Building Two Room 10B	2x4 Acoustic Ceiling Panel	None Detected	Good
15-01	Building Two Room 9A	12x12 Acoustic Ceiling Tile	None Detected	Good
15-02	Building Two Staff Room	12x12 Acoustic Ceiling Tile	None Detected	Good
15-03	Building Two Room 10A	12x12 Acoustic Ceiling Tile	None Detected	Good
16-01	Building Two Room 9A	Blue Speck Sheet Vinyl Flooring	None Detected	Good
16-02	Building Two Staff Room	Blue Speck Sheet Vinyl Flooring	None Detected	Good
16-03	Building Two Laundry Room	Blue Speck Sheet Vinyl Flooring	None Detected	Good
17-01	Building Two Exterior North	Stucco	None Detected	Good
17-02	Building Two Exterior East	Stucco	None Detected	Good
17-03	Building Two Exterior West	Stucco	None Detected	Good

Sample No.	Location	Description	Asbestos Content	Condition
18-01	Building Two Exterior West	Window Putty	None Detected	Good
18-02	Building Two Exterior West	Window Putty	None Detected	Good
18-03	Building Two Exterior West	Window Putty	None Detected	Good
19-01	Building Two Roof North	Grey Roof Patch & Penetration Mastic	<1% Chrysotile	Good
19-02	Building Two Roof South	Grey Roof Patch & Penetration Mastic	<1% Chrysotile	Good
19-03	Building Two Roof West	Grey Roof Patch & Penetration Mastic	<1% Chrysotile	Good
20-01	Building Two Roof North	Brown Asphalt Roof Shingles	None Detected	Good
20-02	Building Two Roof West	Brown Asphalt Roof Shingles	None Detected	Good
21-01	Building Two Roof South	Grey Rolled on Roofing	None Detected	Good
21-02	Building Two Roof East	Grey Rolled on Roofing	None Detected	Good
22-01	Building Three Restroom 1	Plaster	None Detected	Good
22-02	Building Three Restroom 2	Plaster	None Detected	Good
22-03	Building Three Restroom 3	Plaster	None Detected	Good
22-04	Building Three HVAC Closet	Plaster	None Detected	Good
22-05	Building Three Janitor Closet	Plaster	None Detected	Good
23-01	Building Three Room 10	12x12 Acoustic Ceiling Tile	None Detected	Good
23-02	Building Three Restroom 2	12x12 Acoustic Ceiling Tile	None Detected	Good
23-03	Building Three Restroom 3	12x12 Acoustic Ceiling Tile	None Detected	Good
24-01	Building Three HVAC Closet	Fiberglass Heating Duct Insulation	None Detected	Good
24-02	Building Three HVAC Closet	Fiberglass Heating Duct Insulation	None Detected	Good
24-03	Building Three HVAC Closet	Fiberglass Heating Duct Insulation	None Detected	Good
25-01	Building Three Room 10	Beige Sheet Vinyl Flooring	2% Chrysotile	Good

Hazardous Materials Survey Project No. 16-170535.3 November 2, 2016 Page 9

Sample No.	Location	Description	Asbestos Content	Condition
25-02	Building Three Room 10	Beige Sheet Vinyl Flooring	8% Chrysotile	Good
26-01	Building Three Room 12	Beige Speck Sheet Vinyl Flooring	40% Chrysotile	Good
26-02	Building Three Room 12	Beige Speck Sheet Vinyl Flooring	40% Chrysotile	Good
27-01	Building Three Room 11	White 12x12 Vinyl Floor Tile plus Mastic	<1% Chrysotile	Good
27-02	Building Three Room 11	White 12x12 Vinyl Floor Tile plus Mastic	<1% Chrysotile	Good
28-01	Building Three Exterior North	Window Putty	None Detected	Good
28-02	Building Three Exterior North	Window Putty	None Detected	Good
28-03	Building Three Exterior South	Window Putty	None Detected	Good
29-01	Building Three Exterior North	Stucco	None Detected	Good
29-02	Building Three Exterior West	Stucco	None Detected	Good
29-03	Building Three Exterior South	Stucco	None Detected	Good
30-01	Building Three Roof East	Grey Roof Patch & Penetration Mastic	<1% Chrysotile	Good
30-02	Building Three Roof West	Grey Roof Patch & Penetration Mastic	<1% Chrysotile	Good
30-03	Building Three Roof South	Grey Roof Patch & Penetration Mastic	<1% Chrysotile	Good
31-01	Building Three Roof North	Brown Asphalt Roof Shingles	None Detected	Good
31-02	Building Three Roof South	Brown Asphalt Roof Shingles	None Detected	Good
32-01	Building Three Roof East	Grey Rolled on Roofing	None Detected	Good
32-02	Building Three Roof West	Grey Rolled on Roofing	None Detected	Good
Not Sampled	Building Two Janitor Closet	Transite Pipe	РАСМ	Good

Asbestos-containing material is defined as any material containing more than one percent (1%) asbestos as determined using PLM (40 CFR 61).

In California, asbestos-containing construction material (ACCM) is defined by Cal- OSHA as any material containing more than 0.1% (one-tenth of one percent) of asbestos by weight (CCR Title 8, Section 1529).

Documentation of the laboratory results should be retained as a reference for future renovation/ demolition activities.

LEAD-BASED PAINT

A representative number of interior and exterior painted surfaces/components were tested for LBP at the subject property.

A total of 231 XRF readings (including 6 calibration readings) were collected throughout the subject property. Thirty of the 225 actual XRF readings contained a lead content greater than 1.0 mg/cm², which is the current regulatory threshold for the requirement of lead-safe work practices in the City of Goleta, as assessed using an XRF instrument. These building components included walls, windows, doors, and exterior overhangs (Appendix A). Some of the components included lead-containing ceramic tile. While not considered LBP, they were tested and reported due to potential lead hazards should they be disturbed.

Additional readings confirmed detectable levels of lead in paint (less than 1.0 mg/cm²). Please see Appendix A for Suspect Lead-Based Paint Inspection Results.

The California Department of Public Health (CADPH) *Title 17 CCR Division 1, Chapter 8, section 35033* defines LBP as paint or other surface coating that contains any amount of lead equal to or in excess of 1.0 mg/cm² or more than 0.5% by weight. This requirement for lead hazard abatement only applies to public and residential buildings. Los Angeles County defines "dangerous levels of lead-bearing substances" as any paint, varnish, lacquer, putty, plaster, or similar coating which contains lead or its compounds in excess of 0.7 mg/cm² by XRF (Los Angeles County Code, Title 11, Health and Safety Chapter 11.28).

ADDITIONAL HAZARDOUS MATERIALS

Type of Material	Location	Quantity
Fluorescent Lights (mercury)	Throughout Buildings	850 Bulbs
Fluorescent Light Ballasts (PCBs)	Throughout Buildings	265 Fixtures
Emergency Signs (radioactive source)	Throughout Buildings	14 Signs
HVAC Compressors (CFCs)	Rooftops	4 Units
Pad-mounted Electrical Transformer (PCBs)	None	N/A
Hydraulic Elevators (PCBs)	None	N/A
Cleaning Chemicals	Multiple Janitor Closets	N/A
Mercury thermostats	All Three Buildings	23 Thermostats

The following hazardous materials were observed at the site:

3.0 CONCLUSION

ASBESTOS

The following materials were confirmed to contain asbestos:

Friable Regulated Asbestos-Containing Materials (RACM)

- o Beige Speck Sheet Vinyl Flooring- Building 1 Various Flooring- 650 SF
- o White Sheet Vinyl Flooring- Building 3 Flooring- 220 SF
- o Beige Speck Sheet Vinyl Flooring- Building 3 Flooring- 220 SF

Non-Friable Category I and II ACM

- o Beige 12x12 Vinyl Floor Tile and Mastic- Building 1 Flooring- 2,100 SF
- o Grey Roof Patch & Penetration Mastic- Building 1 Roof- 80 LF
- o Transite Pipe- Building Two Janitor Closet- 6 LF

Asbestos-Containing Construction Material (ACCM) – Cal/OSHA (<1% Asbestos)

- o Grey Roof Patch & Penetration Mastic- Building 2 Roof- 40 LF
- Grey Roof Patch & Penetration Mastic- Building 3 Roof- 40 LF
- o White 12x12 Vinyl Floor Tile Mastic- Building 3 Flooring- 220 SF

The roofs were sampled as part of this survey. Asbestos was detected in trace amounts (<1%). Partner recommends those samples be further analyzed by PLM-1000-point count or treated as ACM.

The EPA recommends that all ACM be removed by a certified asbestos contractor prior to any renovation or demolition activities that may impact the material. In the absence of planned renovation/demolition activities, the EPA recommends that ACMs be managed in-place whenever asbestos is identified in a building. Any damaged asbestos materials should be removed, repaired, encapsulated, or enclosed. Asbestos materials that are not damaged may be managed in place in accordance with a written Operations and Maintenance Program.

Federal, state and local laws require building owners and/or their representatives, prior to any demolition and/or renovation operations which may disturb any asbestos-containing materials in their buildings, to meet the following requirements:

- o Notifications,
- o Removal techniques (such as wetting) for asbestos-containing materials,
- o Clean-up procedures,
- Waste storage and disposal requirements.

The potential exists for additional suspect ACM to be exposed during demolition and/or renovation activities. Such materials should be sampled and analyzed for asbestos content prior to any renovation and/or demolition activities that could impact these materials.

LEAD-BASED PAINT

The results of this inspection indicate that lead in amounts greater than or equal to 1.0 mg/cm² in paint were found in building components, using the inspection protocol in Chapter 7 of the *HUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing (2012)*. These building components included walls, windows, doors, and exterior overhangs as indicated in Appendix A. Some of the components included lead-containing ceramic tile. While not considered LBP, they were tested and reported due to potential lead hazards should they be disturbed.

Some of the samples also contained detectable concentrations of lead. Due to the representative nature of the testing under HUD Chapter 7 Guidelines, those testing combinations that tested positive for LBP are indicative of all similar testing combinations also being positive for LBP. Likewise, the testing combinations that tested negative for LBP are indicative of all similar testing combinations also being negative for LBP. Any inaccessible areas should be presumed as LBP until they can be proven otherwise by testing.

Lead paint hazards were identified within the areas accessed during this assessment. If lead paint hazards are identified in areas not previously accessed, they should be properly remediated in accordance with all applicable local, state and federal regulations.

Poor surfaces are considered to be a hazard and should be corrected. Fair surfaces should be repaired, but are not yet considered to be a hazard; if not repaired, they should be monitored frequently. Intact surfaces should be managed under an Operations and Maintenance Plan which includes periodic inspections for condition changes in the paint.

Damaged paint or deteriorated paint should undergo corrective action to stabilize the paint. This work should be conducted by trained workers utilizing lead-safe work practices. Paint stabilization usually involves removing loose and flaking paint, and repainting with a layer of protective non-LBP. If any construction or renovation work is conducted on the subject property, contractors and tenants should be notified about the presence, location, and type of LBP.

Work activities impacting LBP pose a potential exposure risk for workers and/or building occupants. Workers trained in proper safety and respiratory techniques should perform renovation activities that may impact the LBP described in this report. All construction work where an employee may be occupationally exposed to lead must comply with OSHA requirements set forth in 29 CFR 1926.62. This regulation requires initial employee exposure monitoring to evaluate worker exposure during work that disturbs lead-containing materials (lead present in detectable levels). Partner suggests that engineering controls, respiratory protection and personal protective equipment be employed at the start of a project that could disturb LBP.

The potential exists for additional suspect lead-containing materials to be exposed during demolition and/or renovation activities. Such materials should be sampled and analyzed for lead content prior to any renovation and/or demolition activities that could impact these materials.

ADDITIONAL HAZARDOUS MATERIALS

The identified hazardous materials should be properly removed and segregated prior to renovation/demolition activities. Proper packaging and disposal should be conducted in compliance with federal, state, and local regulations. Certain restrictions regarding packaging methods (lab packs), transportation (hazmat certification & manifesting), and disposal (landfill regulations) of hazardous materials could apply.

4.0 LIMITATIONS

Partner subcontracted with EMSL Analytical to perform the asbestos/lead paint chip analysis. No warranties expressed or implied, are made by Partner or its subcontractor EMSL Analytical, or their employees as to the use of any information, apparatus, product or process disclosed in this report. Every reasonable effort has been made to assure correctness. If an asbestos and/or lead abatement contractor or other demolition/construction contractor is employed, such contractor should bring any discrepancies found in this report as it relates to current site conditions or newly discovered site conditions to the immediate attention of Partner.

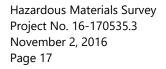
This report should not be used solely for asbestos abatement bidding purposes. Any quantities of ACM listed are estimates only and not meant to be used to solicit abatement quotations. These quantities should be confirmed by abatement contractors prior to submitting bids for abatement.

State-of-the-art practices have been employed to perform this hazardous materials survey. The scope of this evaluation was severely limited to areas which were considered reasonably accessible (i.e., less than 15 feet from the floor), or within range of a visual inspection through reasonable means. No demolition or product research was performed in attempts to reveal material compositions. The services consist of professional opinions and recommendations made in accordance with generally accepted engineering principles/practices. These services are designed to provide an analytical tool to assist the client. Partner and its subcontractor LA Testing and their employees/representatives bear no responsibility for the actual condition of the structure or safety of this site pertaining to asbestos and/or lead contamination regardless of the actions taken by the survey team or the client.

Multiple rooms in buildings two and three were unable to be accessed due to occupants. It should be noted that additional sampling may be required in these areas if additional materials are discovered during demolition.

5.0 SIGNATURES OF PROFESSIONALS

Partner has performed a hazardous materials survey on the property at 5679, 5681, & 5689 Hollister Avenue in Goleta, California, in general conformance with the scope and limitations of the protocol and the limitations stated earlier in this report. Exceptions to or deletions from this protocol are discussed earlier in this report.


Prepared By:

Partner Engineering and Science, Inc.

Freddy Torres Certified Asbestos Consultant #10-4593 Certified Lead Inspector Assessor #17424

Kin Poherto

Kevin Roberts, CAC, CLIA Senior Reviewer

APPENDIX A: LABORATORY ANALYSIS, CHAIN OF CUSTODY, XRF DATA

EMSL Analytical, Inc. 464 McCormick Street San Leandro, CA 94577 MSI Customer PO: 16-170535.3 Tel/Fax: (510) 895-3675 / (510) 895-3680 Project ID: http://www.EMSL.com / sanleandrolab@emsl.com Attention: Kevin Roberts Partner Engineering and Science, Inc. 2154 Torrance Blvd Suite 200 Torrance, CA 90501 C Project: 16-170535.3 / 5679 HOLLISTER AVE., GOLETA, CA

EMSL Order: 091620476 Customer ID: 32PRTN78

Phone:	(310) 765-7285
Fax:	
Received Date:	10/25/2016 8:30 AM
Analysis Date:	10/25/2016
Collected Date:	

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	<u>Non-A</u> % Fibrous	<u>sbestos</u> % Non-Fibrous	<u>Asbestos</u> % Type
091620476-0001	PLASTER - BUILDING 1 - ROOM A3 - VARIOUS; WALLS, CEILINGS	Gray/White Non-Fibrous Homogeneous		40% Quartz 60% Non-fibrous (Other)	None Detected
1-02 091620476-0002	PLASTER - BUILDING 1 - ROOM A7 - VARIOUS; WALLS, CEILINGS	Tan/White Non-Fibrous Homogeneous		40% Quartz 60% Non-fibrous (Other)	None Detected
1-03 091620476-0003	PLASTER - BUILDING 1 - ROOM A8 - VARIOUS; WALLS, CEILINGS	Gray/White Non-Fibrous Homogeneous		35% Quartz 65% Non-fibrous (Other)	None Detected
1-04 091620476-0004	PLASTER - BUILDING 1 - AUDITORIUM - VARIOUS; WALLS, CEILINGS	Tan Non-Fibrous Homogeneous		40% Quartz 60% Non-fibrous (Other)	None Detected
1-05 091620476-0005	PLASTER - BUILDING 1 - DINING ROOM - VARIOUS; WALLS, CEILINGS	Tan Non-Fibrous Homogeneous		40% Quartz 60% Non-fibrous (Other)	None Detected
1-06 091620476-0006	PLASTER - BUILDING 1 - KITCHEN - VARIOUS; WALLS, CEILINGS	White Non-Fibrous Homogeneous		35% Quartz 65% Non-fibrous (Other)	None Detected
1-07 091620476-0007	PLASTER - BUILDING 1 - ENTRY WAY - VARIOUS; WALLS, CEILINGS	White Non-Fibrous Homogeneous		35% Quartz 65% Non-fibrous (Other)	None Detected
2-01 091620476-0008	SAACM - BUILDING 1 - KITCHEN - VARIOUS CEILINGS	White Non-Fibrous Homogeneous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
2-02 091620476-0009	SAACM - BUILDING 1 - CONFERENCE ROOM - VARIOUS CEILINGS	White Non-Fibrous Homogeneous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
2-03 091620476-0010	SAACM - BUILDING 1 - ROOM A7 - VARIOUS CEILINGS	White Non-Fibrous Homogeneous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
2-04	SAACM - BUILDING 1 - ROOM A5 - VARIOUS CEILINGS	White Non-Fibrous Homogeneous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected
2-05 091620476-0012	SAACM - BUILDING 1 - ROOM A3 - VARIOUS CEILINGS	White Non-Fibrous Homogeneous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
2-06 091620476-0013	SAACM - BUILDING 1 - ROOM A2 - VARIOUS CEILINGS	White Non-Fibrous Homogeneous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected

Initial report from: 10/25/2016 16:08:52

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

		Asbestos			
Sample	Description	Appearance	<u>Non-Asbe</u> % Fibrous	% Non-Fibrous	% Туре
2-07	SAACM - BUILDING 1 - ROOM A8 -	White Non-Fibrous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected
091620476-0014	VARIOUS CEILINGS	Homogeneous			
3-01 091620476-0015	12X12 ACT - BUILDING 1 - STAGE - VARIOUS	Orange Fibrous Homogeneous	95% Cellulose	5% Non-fibrous (Other)	None Detected
091020470-0015	CEILINGS	Homogeneous			
3-02	12X12 ACT - BUILDING 1 - ROOM	Orange Fibrous	95% Cellulose	5% Non-fibrous (Other)	None Detected
091620476-0016	A1 - VARIOUS CEILINGS	Homogeneous			
3-03	12X12 ACT - BUILDING 1 - STAGE	Brown Fibrous	95% Cellulose	5% Non-fibrous (Other)	None Detected
091620476-0017	- VARIOUS CEILINGS	Homogeneous			
4-01-VFT	BEIGE 12X12 VFT PLUS MASTIC -	Beige Fibrous		40% Ca Carbonate 60% Non-fibrous (Other)	<1% Chrysotile
091620476-0018	BUILDING 1 - DINING ROOM - VARIOUS FLOORING	Homogeneous			
4-01-Mastic	BEIGE 12X12 VFT PLUS MASTIC -	Black Fibrous		50% Matrix 47% Non-fibrous (Other)	3% Chrysotile
091620476-0018A	BUILDING 1 - DINING ROOM - VARIOUS FLOORING	Homogeneous			
4-01-Compound	BEIGE 12X12 VFT PLUS MASTIC -	White Non-Fibrous		60% Ca Carbonate 40% Non-fibrous (Other)	None Detected
091620476-0018B	BUILDING 1 - DINING ROOM - VARIOUS FLOORING	Homogeneous			
4-02-VFT	BEIGE 12X12 VFT PLUS MASTIC -	Beige Fibrous		40% Ca Carbonate 60% Non-fibrous (Other)	<1% Chrysotile
091620476-0019	BUILDING 1 - DINING ROOM - VARIOUS FLOORING	Homogeneous			
4-02-Mastic	BEIGE 12X12 VFT PLUS MASTIC -	Black Fibrous		60% Matrix 36% Non-fibrous (Other)	4% Chrysotile
091620476-0019A	BUILDING 1 - DINING ROOM - VARIOUS FLOORING	Homogeneous			
4-02-Compound	BEIGE 12X12 VFT PLUS MASTIC -	White Non-Fibrous		60% Ca Carbonate 40% Non-fibrous (Other)	None Detected
091620476-0019B	BUILDING 1 - DINING ROOM - VARIOUS FLOORING	Homogeneous			
4-03-VFT	BEIGE 12X12 VFT PLUS MASTIC -	Beige Non-Fibrous		40% Ca Carbonate 60% Non-fibrous (Other)	<1% Chrysotile
091620476-0020	BUILDING 1 - DINING ROOM - VARIOUS FLOORING	Homogeneous			

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

Pomalo	Description	A	Non-Asbes		Asbestos
Sample 1-03-Mastic	Description BEIGE 12X12 VFT	Appearance Black	% Fibrous	% Non-Fibrous 96% Non-fibrous (Other)	% Type 4% Chrysotile
+-03-INIASIIC	PLUS MASTIC - BUILDING 1 - DINING ROOM - VARIOUS FLOORING	Non-Fibrous Homogeneous		96% NOT-HOTOUS (Other)	4% Chrysolie
4-03-Compound	BEIGE 12X12 VFT PLUS MASTIC -	White Non-Fibrous		60% Ca Carbonate 40% Non-fibrous (Other)	None Detected
091620476-0020B	BUILDING 1 - DINING ROOM - VARIOUS FLOORING	Homogeneous			
5-01	WHITE SPECK SVF - BUILDING 1 -	Tan/White Non-Fibrous		50% Ca Carbonate 50% Non-fibrous (Other)	None Detected
091620476-0021	KITCHEN - VARIOUS FLOORING	Homogeneous			
5-02	WHITE SPECK SVF - BUILDING 1 -	Tan/White Non-Fibrous		50% Ca Carbonate 50% Non-fibrous (Other)	None Detected
091620476-0022	KITCHEN - VARIOUS FLOORING	Homogeneous			
6-01-VSF	WHITE SPECK SVF - BUILDING 1 -	White Fibrous	25% Cellulose 5% Synthetic	70% Non-fibrous (Other)	None Detected
091620476-0023	JANITOR CLOSET - VARIOUS FLOORING	Homogeneous			
6-01-Mastic	WHITE SPECK SVF - BUILDING 1 -	Tan Non-Fibrous	10% Cellulose	90% Non-fibrous (Other)	None Detected
091620476-0023A	JANITOR CLOSET - VARIOUS FLOORING	Homogeneous			
Result includes a small a	mount of inseparable attached mai				
6-02-VSF 091620476-0024	WHITE SPECK SVF - BUILDING 1 - JANITOR CLOSET - VARIOUS	White Fibrous Homogeneous	25% Cellulose 5% Synthetic	70% Non-fibrous (Other)	None Detected
6-02-Mastic	FLOORING WHITE SPECK SVF -	Tan	10% Cellulose	90% Non-fibrous (Other)	None Detected
091620476-0024A	BUILDING 1 - JANITOR CLOSET - VARIOUS FLOORING	Non-Fibrous Homogeneous			
Result includes a small ar	mount of inseparable attached mai	terial			
7-01-VSF	BEIGE SVF - BUILDING 1 - ROOM	Beige Fibrous	20% Cellulose 5% Synthetic	75% Non-fibrous (Other)	None Detected
091620476-0025	5 - VARIOUS FLOORING	Homogeneous			
7-01-Mastic	BEIGE SVF - BUILDING 1 - ROOM	Beige Non-Fibrous		100% Non-fibrous (Other)	None Detected
091620476-0025A	5 - VARIOUS FLOORING	Homogeneous			
7-02-VSF	BEIGE SVF - BUILDING 1 - ROOM	Beige Fibrous	20% Cellulose 5% Synthetic	75% Non-fibrous (Other)	None Detected
091620476-0026	5 HVAC CLOSET- VARIOUS FLOORING	Homogeneous			
7-02-Mastic	BEIGE SVF - BUILDING 1 - ROOM	Beige Non-Fibrous		30% Ca Carbonate 70% Non-fibrous (Other)	None Detected
091620476-0026A	5 HVAC CLOSET- VARIOUS FLOORING	Homogeneous			
Initial report from: 10	/25/2016 16:08:52				
					101

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-As		Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
Result includes a small an	nount of inseparable attached mat	erial			
7-02-VFT 091620476-0026B	BEIGE SVF - BUILDING 1 - ROOM 5 HVAC CLOSET- VARIOUS	Tan Non-Fibrous Homogeneous		70% Ca Carbonate 26% Non-fibrous (Other)	4% Chrysotile
7-02-Mastic 2	FLOORING BEIGE SVF -	Black		100% Non-fibrous (Other)	None Detected
091620476-0026C	BUILDING 1 - ROOM 5 HVAC CLOSET- VARIOUS FLOORING	Non-Fibrous Homogeneous			
8-01	WINDOW PUTTY - BUILDING 1 -	White Non-Fibrous		75% Ca Carbonate 25% Non-fibrous (Other)	None Detected
091620476-0027	EXTERIOR - NORTH - EXTERIOR WINDOWS	Homogeneous			
8-02 091620476-0028	WINDOW PUTTY - BUILDING 1 - EXTERIOR - EAST - EXTERIOR WINDOWS	White Non-Fibrous Homogeneous		75% Ca Carbonate 25% Non-fibrous (Other)	None Detected
8-03 091620476-0029	WINDOW PUTTY - BUILDING 1 - EXTERIOR - SOUTH - EXTERIOR	White Non-Fibrous Homogeneous		75% Ca Carbonate 25% Non-fibrous (Other)	None Detected
	WINDOWS				
9-01-Stucco	STUCCO - BUILDING 1 - EXTERIOR -	Brown/Gray Non-Fibrous		45% Quartz 55% Non-fibrous (Other)	None Detected
091620476-0030	NORTH - EXTERIOR WALLS	Homogeneous			
9-01-Smooth Coat	STUCCO - BUILDING 1 - EXTERIOR - NORTH - EXTERIOR	Brown Non-Fibrous Homogeneous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
	WALLS	Draws (Craw		45% 0	Nega Datastad
9-02 091620476-0031	STUCCO - BUILDING 1 - EXTERIOR - EAST - EXTERIOR WALLS	Brown/Gray Non-Fibrous Homogeneous		45% Quartz 55% Non-fibrous (Other)	None Detected
9-03-Stucco	STUCCO - BUILDING 1 - EXTERIOR -	Brown/Gray Non-Fibrous		45% Quartz 55% Non-fibrous (Other)	None Detected
091620476-0032	WEST - EXTERIOR WALLS	Homogeneous			
9-03-Smooth Coat	STUCCO - BUILDING 1 - EXTERIOR -	Brown Non-Fibrous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
091620476-0032A	WEST - EXTERIOR WALLS	Homogeneous			
10-01	GREY RPPM - BUILDING 1 - ROOF	Gray/Black Fibrous		20% Ca Carbonate 76% Non-fibrous (Other)	4% Chrysotile
091620476-0033	- NORTH - ROOF	Homogeneous		(,	
10-02	GREY RPPM - BUILDING 1 - ROOF	Gray/Black Fibrous		20% Ca Carbonate 76% Non-fibrous (Other)	4% Chrysotile
091620476-0034	- EAST - ROOF	Homogeneous			
10-03	GREY RPPM - BUILDING 1 - ROOF	Gray/Black Fibrous		20% Ca Carbonate 76% Non-fibrous (Other)	4% Chrysotile
091620476-0035	- SOUTH - ROOF	Homogeneous	45% 61	00% Out	New Dirichi
11-01 091620476-0036	BROWN ARS - BUILDING 1 - ROOF - WEST - ROOF	Various/Black/Yello w Fibrous Homogeneous	15% Glass	20% Quartz 60% Matrix 5% Non-fibrous (Other)	None Detected

Initial report from: 10/25/2016 16:08:52

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

			Non-Asbestos		Asbestos	
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре	
11-02-Shingle 091620476-0037	BROWN ARS - BUILDING 1 - ROOF - EAST - ROOF	Various/Black/Yello w Fibrous Homogeneous	12% Glass	25% Quartz 60% Matrix 3% Non-fibrous (Other)	None Detected	
11-02-Tar	BROWN ARS - BUILDING 1 - ROOF	Black Non-Fibrous		60% Matrix 40% Non-fibrous (Other)	None Detected	
091620476-0037A	- EAST - ROOF	Homogeneous				
11-03 091620476-0038	BROWN ARS - BUILDING 1 - ROOF - NORTH - ROOF	Brown/Tan/Black Non-Fibrous Homogeneous	15% Glass	25% Quartz 20% Gypsum 40% Matrix	None Detected	
12-01-Rolled on Roofing	GREY ROR - BUILDING 1 - ROOF	White/Black Fibrous	15% Glass	30% Quartz 50% Matrix	None Detected	
091620476-0039	- NORTH - ROOF	Homogeneous		5% Non-fibrous (Other)		
12-01-Tar	GREY ROR - BUILDING 1 - ROOF - NORTH - ROOF	Black Non-Fibrous Homogeneous		60% Matrix 40% Non-fibrous (Other)	None Detected	
12-02-Rolled On Roofing 091620476-0040	GREY ROR - BUILDING 1 - ROOF - EAST - ROOF	White/Black Fibrous Homogeneous	15% Glass	25% Quartz 60% Matrix	None Detected	
12-02-Tar	GREY ROR -	Black		60% Matrix	None Detected	
12-02-1ar 091620476-0040A	GREY ROR - BUILDING 1 - ROOF - EAST - ROOF	Black Non-Fibrous Homogeneous		40% Matrix 40% Non-fibrous (Other)	NOTIE DETECTED	
12-03-Rolled On	GREY ROR -	White/Black	20% Glass	5% Quartz	None Detected	
Roofing	BUILDING 1 - ROOF - WEST - ROOF	Non-Fibrous Homogeneous		25% Ca Carbonate 50% Matrix		
091620476-0041						
12-03-Tar 091620476-0041A	GREY ROR - BUILDING 1 - ROOF - WEST - ROOF	Black Non-Fibrous Homogeneous		60% Matrix 40% Non-fibrous (Other)	None Detected	
13-01-Plaster	PLASTER -	Gray		40% Quartz	None Detected	
091620476-0042	BUILDING 2 - LAUNDRY ROOM - VARIOUS; WALLS, CEILINGS	Non-Fibrous Homogeneous		60% Non-fibrous (Other)		
13-01-Skim Coat	PLASTER - BUILDING 2 -	White Non-Fibrous		10% Quartz 60% Ca Carbonate	None Detected	
091620476-0042A	LAUNDRY ROOM - VARIOUS; WALLS, CEILINGS	Homogeneous		30% Non-fibrous (Other)		
13-02-Plaster	PLASTER - BUILDING 2 - STAFF	Gray Non-Fibrous		40% Quartz 60% Non-fibrous (Other)	None Detected	
091620476-0043	ROOM - VARIOUS; WALLS, CEILINGS	Homogeneous		· ·		
13-02 Skim Coat	PLASTER - BUILDING 2 - STAFF	White Non-Fibrous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected	
091620476-0043A	ROOM - VARIOUS; WALLS, CEILINGS	Homogeneous				
13-03-Plaster	PLASTER - BUILDING 2 - ROOM	Tan/White Non-Fibrous		40% Quartz 60% Non-fibrous (Other)	None Detected	
091620476-0044	9A - VARIOUS; WALLS, CEILINGS	Homogeneous				
13-03-Skim Coat 091620476-0044B	PLASTER - BUILDING 2 - ROOM 9A - VARIOUS;	White Non-Fibrous Homogeneous		15% Quartz 60% Ca Carbonate 25% Non-fibrous (Other)	None Detected	

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

	Non-Asbestos					
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	<u>Asbestos</u> % Type	
13-04-Plaster	PLASTER - BUILDING 2 - ROOM 10A - VARIOUS; WALLS, CEILINGS	Gray Non-Fibrous Homogeneous		40% Quartz 60% Non-fibrous (Other)	None Detected	
13-04-Skim Coat 091620476-0045A	PLASTER - BUILDING 2 - ROOM 10A - VARIOUS;	White Non-Fibrous Homogeneous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected	
13-05-Plaster 091620476-0046	WALLS, CEILINGS PLASTER - BUILDING 2 - ROOM 10B - VARIOUS; WALLS, CEILINGS	Tan Non-Fibrous Homogeneous		40% Quartz 60% Non-fibrous (Other)	None Detected	
13-05-Skim Coat 091620476-0046A	PLASTER - BUILDING 2 - ROOM 10B - VARIOUS; WALLS, CEILINGS	White Non-Fibrous Homogeneous		60% Ca Carbonate 40% Non-fibrous (Other)	None Detected	
13-06-Skim Coat 091620476-0047	PLASTER - BUILDING 2 - ROOM 11A - VARIOUS; WALLS, CEILINGS	White Non-Fibrous Homogeneous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected	
13-06-Plaster 091620476-0047A	PLASTER - BUILDING 2 - ROOM 11A - VARIOUS; WALLS, CEILINGS	White Non-Fibrous Homogeneous		40% Quartz 25% Gypsum 35% Non-fibrous (Other)	None Detected	
13-07-Skim Coat 091620476-0048	PLASTER - BUILDING 2 - STAFF ROOM - VARIOUS; WALLS, CEILINGS	White Non-Fibrous Homogeneous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected	
13-07-Plaster 091620476-0048A	PLASTER - BUILDING 2 - STAFF ROOM - VARIOUS; WALLS, CEILINGS	White Non-Fibrous Homogeneous		40% Quartz 25% Gypsum 35% Non-fibrous (Other)	None Detected	
14-01 091620476-0049	2X4 ACP - BUILDING 2 - ROOM 9A - VARIOUS CEILINGS	White Fibrous Homogeneous	70% Cellulose	20% Perlite 10% Non-fibrous (Other)	None Detected	
14-02 091620476-0050	2X4 ACP - BUILDING 2 - ROOM 11A - VARIOUS CEILINGS	White Fibrous Homogeneous	60% Cellulose 7% Min. Wool	20% Perlite 13% Non-fibrous (Other)	None Detected	
14-03 091620476-0051	2X4 ACP - BUILDING 2 - ROOM 10B - VARIOUS CEILINGS	Gray Non-Fibrous Homogeneous	60% Cellulose 5% Min. Wool	35% Non-fibrous (Other)	None Detected	
15-01 091620476-0052	12X12 ACT - BUILDING 2 - ROOM 9A - VARIOUS CEILINGS	Orange Fibrous Homogeneous	95% Cellulose	5% Non-fibrous (Other)	None Detected	
15-02 091620476-0053	12X12 ACT - BUILDING 2 - STAFF ROOM - VARIOUS CEILINGS	Orange Fibrous Homogeneous	95% Cellulose	5% Non-fibrous (Other)	None Detected	
15-03 091620476-0054	12X12 ACT - BUILDING 2 - ROOM 10A - VARIOUS CEILINGS	Brown Fibrous Homogeneous	95% Cellulose	5% Non-fibrous (Other)	None Detected	
16-01-SVF	BLUE SPECK SVF - BUILDING 2 - ROOM	Blue Non-Fibrous	20% Cellulose 10% Glass	25% Ca Carbonate 35% Matrix	None Detected	

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

		Asbestos			
Sample	Description	Appearance	<u>Non-Asbes</u> % Fibrous	% Non-Fibrous	% Type
16-01-Mastic 091620476-0055A	BLUE SPECK SVF - BUILDING 2 - ROOM 9A - VARIOUS FLOORING	Tan Non-Fibrous Homogeneous		15% Ca Carbonate 65% Matrix 20% Non-fibrous (Other)	None Detected
16-02-SVF	BLUE SPECK SVF - BUILDING 2 - STAFF	Blue Non-Fibrous	20% Cellulose 10% Glass	25% Ca Carbonate 35% Matrix	None Detected
091620476-0056	ROOM - VARIOUS FLOORING	Homogeneous		10% Non-fibrous (Other)	
This is a composite resu	It of both vinyl and backing layer				
16-02-Mastic 091620476-0056A	BLUE SPECK SVF - BUILDING 2 - STAFF ROOM - VARIOUS FLOORING	Tan Non-Fibrous Homogeneous		15% Ca Carbonate 65% Matrix 20% Non-fibrous (Other)	None Detected
16-03-VSF	BLUE SPECK SVF -	Blue	20% Cellulose	70% Non-fibrous (Other)	None Detected
091620476-0057	BUILDING 2 - LAUNDRY ROOM - VARIOUS FLOORING	Fibrous Homogeneous	10% Glass		
This is a composite resu	It of both vinyl and backing layer				
16-03-Mastic 091620476-0057A	BLUE SPECK SVF - BUILDING 2 - LAUNDRY ROOM - VARIOUS	Tan Non-Fibrous Homogeneous		15% Ca Carbonate 85% Non-fibrous (Other)	None Detected
This is a composite resu	FLOORING It of both vinyl and backing layer				
17-01	STUCCO - BUILDING 2 - EXTERIOR -	Gray Non-Fibrous		40% Quartz 15% Ca Carbonate	None Detected
091620476-0058	NORTH - EXTERIOR WALLS	Homogeneous		25% Gypsum 20% Non-fibrous (Other)	
17-02	STUCCO - BUILDING 2 - EXTERIOR -	Gray Non-Fibrous		40% Quartz 15% Ca Carbonate	None Detected
091620476-0059	EAST - EXTERIOR - WALLS	Homogeneous		25% Gypsum 20% Non-fibrous (Other)	
17-03	STUCCO - BUILDING	Gray		40% Quartz	None Detected
091620476-0060	2 - EXTERIOR - WEST - EXTERIOR WALLS	Non-Fibrous Homogeneous		60% Non-fibrous (Other)	
18-01	WINDOW PUTTY - BUILDING 2 -	Gray Non-Fibrous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
091620476-0061	EXTERIOR - WEST - EXTERIOR WINDOWS	Homogeneous			
18-02	WINDOW PUTTY - BUILDING 2 -	Gray Non-Fibrous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
091620476-0062	EXTERIOR - WEST - EXTERIOR WINDOWS	Homogeneous			
18-03	WINDOW PUTTY - BUILDING 2 -	Gray/Blue Non-Fibrous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
091620476-0063	EXTERIOR - WEST - EXTERIOR WINDOWS	Homogeneous			
19-01	GREY RPPM - BUILDING 2 - ROOF	Gray/Black Non-Fibrous	12% Cellulose	70% Matrix 18% Non-fibrous (Other)	<1% Chrysotile
091620476-0064	- NORTH - ROOF	Homogeneous			
19-02	GREY RPPM - BUILDING 2 - ROOF	Gray/Black Non-Fibrous	8% Cellulose	70% Matrix 22% Non-fibrous (Other)	<1% Chrysotile
091620476-0065	- SOUTH - ROOF	Homogeneous			

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

			Non-Asbestos		<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
19-03 091620476-0066	GREY RPPM - BUILDING 2 - ROOF - WEST - ROOF	Gray/Black Fibrous Homogeneous	15% Cellulose	85% Non-fibrous (Other)	<1% Chrysotile
20-01	BROWN ARS - BUILDING 2 - ROOF	Black Non-Fibrous	20% Glass	5% Quartz 10% Gypsum	None Detected
091620476-0067	- NORTH - ROOF	Homogeneous		65% Matrix	
20-02 091620476-0068	BROWN ARS - BUILDING 2 - ROOF - WEST - ROOF	Black Non-Fibrous Homogeneous	20% Glass	5% Quartz 10% Gypsum 65% Matrix	None Detected
21-01-Rolled On	GREY ROR -	Gray/Black	5% Glass	60% Matrix	None Detected
Roofing	BUILDING 2 - ROOF - SOUTH - ROOF	Fibrous Homogeneous	5% Glass	35% Non-fibrous (Other)	None Delected
091620476-0069					
21-01-Mastic	GREY ROR - BUILDING 2 - ROOF - SOUTH - ROOF	Black Non-Fibrous		80% Matrix 20% Non-fibrous (Other)	None Detected
	GREY ROR -	Homogeneous Black	5% Glass	60% Matrix	None Detected
21-02-Rolled On Roofing	BUILDING 2 - ROOF - EAST - ROOF	Non-Fibrous Homogeneous	5% Glass	35% Non-fibrous (Other)	None Delected
091620476-0070		5			
21-02-Mastic	GREY ROR - BUILDING 2 - ROOF	Black Non-Fibrous		80% Matrix 20% Non-fibrous (Other)	None Detected
091620476-0070A	- EAST - ROOF	Homogeneous			
22-01-Plaster	PLASTER - BUILDING 3 -	Gray Non-Fibrous		40% Quartz 15% Ca Carbonate	None Detected
091620476-0071	RESTROOM 1 - VARIOUS; WALLS, CEILINGS	Homogeneous		20% Gypsum 25% Non-fibrous (Other)	
22-01-Skim Coat	PLASTER - BUILDING 3 -	White Non-Fibrous		60% Ca Carbonate 40% Non-fibrous (Other)	None Detected
091620476-0071A	RESTROOM 1 - VARIOUS; WALLS, CEILINGS	Homogeneous			
22-02-Plaster	PLASTER - BUILDING 3 -	Gray Non-Fibrous	2% Cellulose	40% Quartz 15% Ca Carbonate	None Detected
091620476-0072	RESTROOM 2 - VARIOUS; WALLS, CEILINGS	Homogeneous		25% Gypsum 18% Non-fibrous (Other)	
22-02-Skim Coat	PLASTER - BUILDING 3 -	White Non-Fibrous		60% Ca Carbonate 40% Non-fibrous (Other)	None Detected
091620476-0072A	RESTROOM 2 - VARIOUS; WALLS, CEILINGS	Homogeneous			
22-03-Plaster	PLASTER - BUILDING 3 -	Gray/White Non-Fibrous		40% Quartz 15% Ca Carbonate	None Detected
091620476-0073	RESTROOM 3 - VARIOUS; WALLS, CEILINGS	Homogeneous		25% Gypsum 20% Non-fibrous (Other)	
22-03-Skim Coat	PLASTER - BUILDING 3 -	White Non-Fibrous		60% Ca Carbonate 40% Non-fibrous (Other)	None Detected
091620476-0073A	RESTROOM 3 - VARIOUS; WALLS, CEILINGS	Homogeneous			
22-04-Plaster	PLASTER - BUILDING 3 - HVAC	Gray/White Non-Fibrous		40% Quartz 15% Ca Carbonate	None Detected
091620476-0074	CLOSET - VARIOUS; WALLS, CEILINGS	Homogeneous		25% Gypsum 20% Non-fibrous (Other)	

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

			Non-Asbes	itos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
22-04-Skim Coat 091620476-0074A	PLASTER - BUILDING 3 - HVAC CLOSET - VARIOUS; WALLS, CEILINGS	White Non-Fibrous Homogeneous		60% Ca Carbonate 40% Non-fibrous (Other)	None Detected
22-05-Plaster 091620476-0075	PLASTER - BUILDING 3 - JANITOR CLOSET - VARIOUS; WALLS, CEILINGS	Gray/White Non-Fibrous Homogeneous		40% Quartz 15% Ca Carbonate 25% Gypsum 20% Non-fibrous (Other)	None Detected
22-05-Skim Coat 091620476-0075A	PLASTER - BUILDING 3 - JANITOR CLOSET - VARIOUS; WALLS, CEILINGS	White Non-Fibrous Homogeneous		60% Ca Carbonate 40% Non-fibrous (Other)	None Detected
23-01 091620476-0076	12X12 ACT - BUILDING 3 - ROOM 10 - VARIOUS CEILINGS	Brown/White Fibrous Homogeneous	90% Cellulose	10% Non-fibrous (Other)	None Detected
23-02 091620476-0077	12X12 ACT - BUILDING 3 - RESTROOM 2 - VARIOUS CEILINGS	Brown/White Fibrous Homogeneous	90% Cellulose	10% Non-fibrous (Other)	None Detected
23-03 091620476-0078	12X12 ACT - BUILDING 3 - RESTROOM 3 - VARIOUS CEILINGS	Brown Fibrous Homogeneous	90% Cellulose	10% Non-fibrous (Other)	None Detected
24-01 091620476-0079	FIBERGLASS HD1 - BUILDING 3 - HVAC CLOSET - VARIOUS CEILINGS	Yellow Fibrous Homogeneous	90% Min. Wool	10% Non-fibrous (Other)	None Detected
24-02 091620476-0080	FIBERGLASS HD1 - BUILDING 3 - HVAC CLOSET - VARIOUS CEILINGS	Yellow Fibrous Homogeneous	90% Min. Wool	10% Non-fibrous (Other)	None Detected
24-03 091620476-0081	FIBERGLASS HD1 - BUILDING 3 - HVAC CLOSET - VARIOUS CEILINGS	Yellow Non-Fibrous Homogeneous	90% Min. Wool	10% Non-fibrous (Other)	None Detected
25-01-SVF 091620476-0082	BEIGE SVF - BUILDING 3 - ROOM 10 - VARIOUS FLOORING	Tan/White Fibrous Homogeneous	10% Glass	35% Ca Carbonate 40% Matrix 15% Non-fibrous (Other)	None Detected
25-01-Mastic 1 091620476-0082A	BEIGE SVF - BUILDING 3 - ROOM 10 - VARIOUS FLOORING	Clear Non-Fibrous Homogeneous		80% Matrix 20% Non-fibrous (Other)	None Detected
25-01-VFT 091620476-0082B	BEIGE SVF - BUILDING 3 - ROOM 10 - VARIOUS FLOORING	Yellow Non-Fibrous Homogeneous		60% Ca Carbonate 38% Non-fibrous (Other)	2% Chrysotile
25-01-Mastic 2 091620476-0082C	BEIGE SVF - BUILDING 3 - ROOM 10 - VARIOUS FLOORING	Black Non-Fibrous Homogeneous		80% Matrix 12% Non-fibrous (Other)	8% Chrysotile
25-02-SVF 091620476-0083	BEIGE SVF - BUILDING 3 - ROOM 10 - VARIOUS FLOORING	Tan/White Fibrous Homogeneous	10% Glass	35% Ca Carbonate 40% Matrix 15% Non-fibrous (Other)	None Detected

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

			Non-A	sbestos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
25-02-Mastic 1 091620476-0083A	BEIGE SVF - BUILDING 3 - ROOM 10 - VARIOUS FLOORING	Clear Non-Fibrous Homogeneous		80% Matrix 20% Non-fibrous (Other)	None Detected
25-02-VFT	BEIGE SVF -	Yellow		60% Ca Carbonate	2% Chrysotile
091620476-0083B	BUILDING 3 - ROOM 10 - VARIOUS FLOORING	Non-Fibrous Homogeneous		38% Non-fibrous (Other)	
25-02-Mastic 2	BEIGE SVF - BUILDING 3 - ROOM	Black Non-Fibrous		80% Matrix 12% Non-fibrous (Other)	8% Chrysotile
091620476-0083C	10 - VARIOUS FLOORING	Homogeneous			
26-01-SVF	BEIGE SPECK SVF - BUILDING 3 - ROOM	Brown Fibrous		30% Ca Carbonate 20% Matrix	40% Chrysotile
091620476-0084	12 - VARIOUS FLOORING	Homogeneous		10% Non-fibrous (Other)	
26-01-Mastic	BEIGE SPECK SVF - BUILDING 3 - ROOM	Brown/White Non-Fibrous		80% Matrix 20% Non-fibrous (Other)	None Detected
091620476-0084A	12 - VARIOUS FLOORING	Homogeneous			
26-02-SVF	BEIGE SPECK SVF - BUILDING 3 - ROOM	Beige Fibrous		30% Ca Carbonate 20% Matrix	40% Chrysotile
091620476-0085	12 - VARIOUS FLOORING	Homogeneous		10% Non-fibrous (Other)	
26-02-Mastic	BEIGE SPECK SVF - BUILDING 3 - ROOM	Brown/White Non-Fibrous		80% Matrix 20% Non-fibrous (Other)	None Detected
091620476-0085A	12 - VARIOUS FLOORING	Homogeneous			
27-01-VFT	WHITE 12X12 VFT PLUS MASTIC -	White Non-Fibrous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected
091620476-0086	BUILDING 3 - ROOM 11 - VARIOUS FLOORING	Homogeneous			
27-01-Mastic	WHITE 12X12 VFT PLUS MASTIC -	Brown/Black/Clear Non-Fibrous		80% Matrix 20% Non-fibrous (Other)	<1% Chrysotile
091620476-0086A	BUILDING 3 - ROOM 11 - VARIOUS FLOORING	Homogeneous			
27-02-VFT	WHITE 12X12 VFT PLUS MASTIC -	White Non-Fibrous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected
091620476-0087	BUILDING 3 - ROOM 11 - VARIOUS FLOORING	Homogeneous			
27-02-Mastic	WHITE 12X12 VFT PLUS MASTIC -	Brown/Black/Clear Non-Fibrous		80% Matrix 20% Non-fibrous (Other)	<1% Chrysotile
091620476-0087A	BUILDING 3 - ROOM 11 - VARIOUS FLOORING	Homogeneous			
28-01	WINDOW PUTTY - BUILDING 3 -	Gray Non-Fibrous		70% Ca Carbonate 30% Non-fibrous (Other)	None Detected
091620476-0088	EXTERIOR - NORTH - EXTERIOR WINDOWS	Homogeneous			
28-02	WINDOW PUTTY - BUILDING 3 -	Gray Non-Fibrous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
091620476-0089	EXTERIOR - NORTH - EXTERIOR WINDOWS	Homogeneous			

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com
 EMSL Order:
 091620476

 Customer ID:
 32PRTN78

 Customer PO:
 16-170535.3

Project ID:

			Non-Asbe	stos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
28-03 091620476-0090	WINDOW PUTTY - BUILDING 3 - EXTERIOR - SOUTH - EXTERIOR WINDOWS	Gray Non-Fibrous Homogeneous		80% Ca Carbonate 20% Non-fibrous (Other)	None Detected
29-01 091620476-0091	STUCCO - BUILDING 3 - EXTERIOR - NORTH - EXTERIOR WALLS	Gray Non-Fibrous Homogeneous		40% Quartz 20% Ca Carbonate 20% Gypsum 20% Non-fibrous (Other)	None Detected
29-02 091620476-0092	STUCCO - BUILDING 3 - EXTERIOR - WEST - EXTERIOR WALLS	Gray Non-Fibrous Homogeneous		40% Quartz 20% Ca Carbonate 20% Gypsum 20% Non-fibrous (Other)	None Detected
29-03 091620476-0093	STUCCO - BUILDING 3 - EXTERIOR - SOUTH - EXTERIOR WALLS	Gray Non-Fibrous Homogeneous		40% Quartz 60% Non-fibrous (Other)	None Detected
30-01 091620476-0094	GREY RPPM - BUILDING 3 - ROOF - EAST - ROOF	Gray/Black Non-Fibrous Homogeneous	10% Cellulose	70% Matrix 20% Non-fibrous (Other)	<1% Chrysotile
30-02 091620476-0095	GREY RPPM - BUILDING 3 - ROOF - WEST - ROOF	Gray/Black Non-Fibrous Homogeneous	12% Cellulose	70% Matrix 18% Non-fibrous (Other)	<1% Chrysotile
30-03 091620476-0096	GREY RPPM - BUILDING 3 - ROOF - SOUTH - ROOF	Gray/Black Fibrous Homogeneous	15% Cellulose	85% Non-fibrous (Other)	<1% Chrysotile
31-01	BROWN ARS - BUILDING 3 - ROOF - NORTH - ROOF	Black Non-Fibrous Homogeneous	20% Glass	5% Quartz 10% Gypsum 65% Matrix	None Detected
31-02 091620476-0098	BROWN ARS - BUILDING 3 - ROOF - SOUTH - ROOF	Black Non-Fibrous Homogeneous	20% Glass	5% Quartz 10% Gypsum 65% Matrix	None Detected
32-01-Rolled On Roofing 091620476-0099	GREY ROR - BUILDING 3 - ROOF - EAST - ROOF	Black Non-Fibrous Homogeneous	10% Glass	65% Matrix 25% Non-fibrous (Other)	None Detected
32-01-Mastic	GREY ROR - BUILDING 3 - ROOF - EAST - ROOF	Black Non-Fibrous Homogeneous		90% Matrix 10% Non-fibrous (Other)	None Detected
32-02	GREY ROR - BUILDING 3 - ROOF - WEST - ROOF	Black Non-Fibrous Homogeneous	10% Glass	65% Matrix 25% Non-fibrous (Other)	None Detected

464 McCormick Street San Leandro, CA 94577 Tel/Fax: (510) 895-3675 / (510) 895-3680 http://www.EMSL.com / sanleandrolab@emsl.com

Analyst(s)

Beheshta Ahadi (41) Cecilia Yu (27) Jared Martin (13) Matthew Batongbacal (33) Raphael Feliciano (32)

Aciplicher

Chris Dojlidko, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Samples received in good condition unless otherwise noted. Estimated accuracy, precision and uncertainty data available upon request. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Reporting limit is 1%

Samples analyzed by EMSL Analytical, Inc San Leandro, CA NVLAP Lab Code 101048-3, WA C884

Initial report from: 10/25/2016 16:08:52

			ACM ANALYSIS			
CLIENT: PROJECT #:_ PROJECT LO Sample #	16-170535.3 CATION:5679 Hol Material Description	Partner ESI 2154 Torrance, Blvd, Suite Torrance, California 905 Phone (310)615-4500, Fax (310)80 Lab: <u>L.A. Testing</u> Lab: <u>L.A. Testing</u> Sample Location	66-928-7408 Technician Sampling I	9162 	Torres	
	······			or LF)	or N)	(G/D/SD)
1-01	Plaster	Building 1 Room A3	Various, Walls Keilman		N	G
1-02						
1-03		A8	/			├-
1-04		Auditorium			$\left \right $	$\left - \right $
1-05		Dining Room				
1-07		Kitchen	<u> </u>			┝╍╂─
2-01	SAACM	Entry Way Kitchen	Various Ceilings		4	
2-07		Conference Room				
3-03	- L	+ Room AT	₩		+	4
	results to Kroberts@partn eddy Torres 310-200-4006	eresi.com	TAT:SD ANALYSIS: <u>X</u> PLM Bulk-EPA/60			
Relinquished Received: <u> </u>	omen (Plu)	Date/Time: Date/Time:_10/24/16 1130p	Relinquished: Received:	Date/Time: Date/Time:	-	-
DWJC - DRY W VFT/M - VINYL SVF - SHEET V VCB/M - VINYL	Y-APPLIED ACOUSTIC CEILIN ALL JOUNT COMPOUND FLOOR TILE & MASTIC INYL FLOORING COVE BASE & MASTIC DUCT INSULATION ATION	NG MATERIAL	ACP - ACOUSTIC CEILING PANEL ACT - ACOUSTIC CEILING TILE- RPPM - ROOF PATCH & PENETRAT ARS - ASPHAULT ROOF SHINGLES ROR - ROLLED-ON ROOFING Comments: Transite Pipe QTY	5	N - North S - South G - Good D - Damage SD - Sig. D	amaged

			2154	ODY-BULK SUSPECT A Partner ESI 4 Torrance Blvd, Suite 20 prrance, California 90501	00	#0	91620 Page 2	of 6	
			To 10)61	5-4500, Fax (310)866-92	8-7408	Leastion	Quantity (SF	Friable (Y	Condition
せいし-	10535.3	<u>Pr</u>	Sample Lo	cation	Material Location		or LF)	or:N)	(G/D/SD)
Sample #	Material Description	: # ≇ ::::::::::::::::::::::::::::::::::						17	
	^	Building 1	Rc	iom AS	various	Ceilings			6
2-04	SAACN			A3		1		+-+-	┼╌┼╼┨
2-05	· · · · · · · · · · · · · · · · · · ·	┼──┼──		A2				+-+-	┼╍╌┤
2-04	>							┿╼╌╉─╴	+-+
2-07	1	<u>↓</u>	<u>·</u>	6 <u>A8</u>				+-+	┼──┼──
3-01	LILLING ACT	<u> </u>	Stay	Ý	+				
	1		<u>R</u>	com Al				4	
3-02	4		5+	2	Janious	FLOOTING		17	
3-07	Baico 12×12		Dining	Room				1	
4-01			1					-+	
4-02								+++	
4-03	inite mus	++	Kitch	hen				-+-+-	-+-+
5-01	Speck		 بل	7				╶┼╌╂╴	-+-+
5-02	2 0	++-	······································	for Closet		1		_ \ _ 	
6-0			2000						
60	2 4 4								
7-0	Beige		<u> </u>	5 HVACLIS	set	-		่่_่	
1-0			¥		الم معاديك أ	or winds	ours		
8-0	\Box , ∇ ∇ ∂ H	1 E	Exterior						
8.0				East		4	'		
8-0			4	Swith				T	202
9-0			Exter	ior Nort	n Exter	They where			

r			CHAIN OF CU	STODY-BUL	K SUSPECT AC	MANALYSIS				·	J Orde
L			2	Part 154 Torrance, C	ner ESI e Blvd, Suite 20 californía 90501	0	#0	9162(Page 3	of te		OrderID: 09
3	416-170	0535.3	Phone (310) Sample 1	615-4500, F	ax (310)866-928-	Material Lo	cation	Quantity (SF or LF)	Friable (Y or N)	(G/D/SD)	
ſ	Sample #	Material Description			-:					·	2047
						Exterior	WENTS		2	6	ດ
Ī	9-02	STUCCO	Building 1 Er	Arrisr	East				1	1	
ľ	9-03	4.		7	west	♦			+-+-		-1
ł		Grey RPPM	Roci	F	North	Reof		SOLF	┼─┼─	┼──┼╴	
	10-01				East				+-+-	┼──╊	{
	10-02		+		South			4	\downarrow	┽╾╍╁	
Page	10-03	¥									
je 3	11-01	Brown ARS		 =	West	<u>├</u> ────╂─					
Of	11-02				East	<u> </u>		<u>}</u>	+		
		4			North	↓		╂────	+-+	┤──┨	
თ	11-03	6 BOQ			North	ļ		┼		┽╾᠆┨	
	12-01	Grey POR			East			┦	-}}		-1
	12-02			 T	west						$\left\{ -1 \right\}$
	12-03					Various y Leily	valls vois				
	13-01	Plasster		<u>cundry</u>			<u></u>				
	13-02		51	aff P	<u>com</u>	+1		+		-	
				<u>Recom</u>	9A	<u> </u>	┠────		╼┼╌╌┽╴		+1
	13-03			١	104		<u> </u>		╶┼╾─┼╴		}−- {
	13-04				108		<u> </u>		╾┼╼┼╴		┼─┨
	13-05				11A						} }
	13-06	>					4		4		44
	13-07			Staff Room		Ulrious	Ceiline	·	Y		
	14-01			Room			<u> </u>	-+	b	03	
	14-02		4	2	11A		习				

			CHAIN OF CUSTOR	DY-BULK SUSPE	CT ACM ANALYSI	S	and provide a state of the stat		
#16-170 Sample #	S 3 5. 多 Material Description		2154 To Torra <u>Phone (310)615-49</u>	Partner ESI prrance Blvd, Su nce, California 9 500 Eax (210)000	ite 200		91620	476	· · ·
				···· ···	the start as	I Location	Guantity (SF	GF Friable (Y Co	
I . (XY ALP	Building	52 Room	10.6			or LF)	or N)	(G/D/
15-01 12 15-02	XIZ ACT		ł	9A	Varias	Ceilineas		Y	G
15-03		┼──┼		Room					
16-01 Bive	CK SVE	┟──┼╴	Room	AOI					
16-02			L	AP	Various F	looring			
16-03	4			F Room				N	
17-01 5th	1000		- Laundry Exterior)	4			+++	-+
17-03	<u> </u>			North	Exterior	Walls			
	abus Putty		4	west				+	\Box
8-02	1		Exterior	west	Exterior (indus -			
18-03								╶╂╌╂╌	
7-01 Grey	RPPM		Roof					++-	+
-03	<u>}</u>			North	Roof				+
	n ARS			South West					
- 02				North				├──	\square
-DI Grey	ROR			west					$\left\{ -\frac{1}{2} \right\}$
-02 5	P		<u>t</u> ,	South				204	+ -1

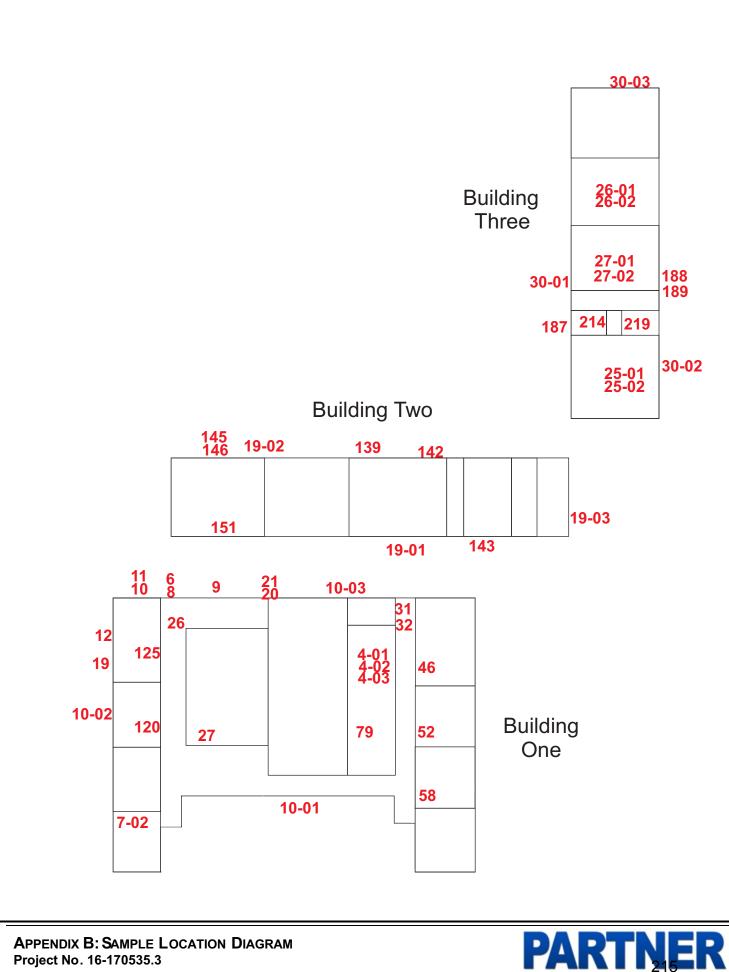
			CHAIN OF CUSTODY-BULK SUSPECT AC	CM ANALYSIS	
	¥16-170	0535.3	Partner ESI 2154 Torrance Blvd, Suite 20 Torrance, California 90501 Phone (310)615-4500, Fax (310)866-928-		091820476
	Sample #	Material Description		Material Location	Quantity (SF Friable (Y Condition or LF) or N) (G/D/SD)
	22-01	Plaster	Building 3 Restroom 1	Various, walls cellings	NG
	22-02		5 + 2		
	22-03		3		
	22-04		HVAC CLOSEN		
J	22-05	\$	Janitor Clouet		
Dage	23-01	12×12 ACT	Room 10	Various ceilings	Y
л Оf	23-02	<u>\</u>	Restruom 2		
	23-03	4	1 3		
ע	24-01	Fiberglass HDI	HVAC CLOSEF		
	2402				
	24-03	4		6	
	25-01	Beige SNF	Room 10	Various Flooring	N
	25-02	4	<u>↓</u>		
	26-01	Beige Speck	Room 12		
	26-02	<u>+</u> +	÷		
	27-01	White 12x12 VFT. plus Mastir	Room 11		
	27-02	F F	<u> </u>	<u> </u>	
	28-01	Window Putty	Exterior North	Exterior Windows	
	28.02		5		
	28-03		touth		205

				OF CUSTODY-BULK		CM ANALYSIS			
[CHAIN	Partner	ESI	#	09162	0476	
÷	16-170	535.3	Pho	2154 Torrance B Torrance, Calif one (310)615-4500, Fax ((<u>310)866-928</u>	-7408	Page 4 Quantity (SF	of 6	
ſ	Sample #	Material Description		Sample Location		명이 가지 않는 것이다. 영화 2명 - 100 명령 2명 - 100 명령 200 명령 200	or LF)		
ł	29-01	540000	Building 3	Exterior	North	Exterior Walls		IN I	G
	29.02				WEEt				
	29-03		+	Roof	East	Roof		++	+ + - +
IJ	30-01	Grey RPPM			West			++	┼╌╍┼╼╼┨
Page 6	30-02	4			South	↓ ↓			
Of	31-01	Brown ARS			North South		`	╶┼╌┼╴	
თ	31-02	1, 000			East				
	32-02				West				
									_
								_	
								2	06

Shot	Date	Building	Room	Component	Sub-Component	Substrate	Side	Condition	Results	PbC
1	10/20/2016	Calibration							Positive	1
2	10/20/2016	Calibration							Positive	1
3	10/20/2016	Calibration							Positive	1.1
4	10/20/2016	Building One	Exterior	Wall		Stucco	А	Intact	Negative	0
5	10/20/2016	Building One	Exterior	Wall		Stucco	В	Intact	Negative	0
6	10/20/2016	Building One	Exterior	Wall		Stucco	С	Intact	Positive	1.8
7	10/20/2016	Building One	Exterior	Wall		Stucco	D	Intact	Negative	0
8	10/20/2016	Building One	Exterior	Door	Frame	Metal	С	Intact	Positive	6.9
9	10/20/2016	Building One	Exterior	Door	Jamb	Metal	С	Intact	Positive	5.4
10	10/20/2016	Building One	Exterior	Window	Sash	Wood	С	Fair	Positive	5.6
11	10/20/2016	Building One	Exterior	Window	Sill	Concrete	С	Fair	Positive	2.6
12	10/20/2016	Building One	Exterior	Overhang	Ceiling	Wood	В	Intact	Positive	3.6
13	10/20/2016	Building One	Exterior	Overhang	Beam	Wood	В	Intact	Negative	0.16
14	10/20/2016	Building One	Exterior	Overhang	Guttter	Metal	В	Intact	Negative	0.04
15	10/20/2016	Building One	Exterior	Column		Stucco	А	Intact	Negative	0.05
16	10/20/2016	Building One	Exterior	Railing		Metal	А	Intact	Negative	0
17	10/20/2016	Building One	Exterior	Floor	Tile	Ceramic	А	Intact	Negative	0.26
18	10/20/2016	Building One	Exterior	Vent Louver		Metal	В	Intact	Negative	0
19	10/20/2016	Building One	Exterior	Window	Frame	Wood	В	Intact	Positive	7.7
20	10/20/2016	Building One	Exterior	Patio	Ceiling	Stucco	С	Intact	Positive	3.5
21	10/20/2016	Building One	Exterior	Patio	Column	Metal	С	Intact	Positive	3.3
22	10/20/2016	Building One	Court Yard	Wall		Stucco	А	Intact	Negative	0
23	10/20/2016	Building One	Court Yard	Wall		Stucco	В	Intact	Negative	0.4
24	10/20/2016	Building One	Court Yard	Wall		Stucco	С	Intact	Negative	0
25	10/20/2016	Building One	Court Yard	Wall		Stucco	D	Intact	Negative	0
26	10/20/2016	Building One	Court Yard	Door	Frame	Metal	С	Intact	Positive	5.3
27	10/20/2016	Building One	Court Yard	Window	Sill	Concrete	Α	Poor	Positive	3.4
28	10/20/2016	Building One	Court Yard	Window	Frame	Wood	А	Intact	Negative	0.04
29	10/20/2016	Building One	West Hallway	Wall		Plaster	В	Intact	Negative	0
30	10/20/2016	Building One	West Hallway	Wall		Plaster	D	Intact	Negative	0
31	10/20/2016	Building One	West Hallway	Door	Jamb	Wood	С	Intact	Positive	5.4
32	10/20/2016	Building One	West Hallway	Door	Frame	Wood	С	Intact	Positive	5.9
33	10/20/2016	Building One	West Hallway	Ceiling		Wood		Intact	Negative	0.07

34	10/20/2016	Building One	West Hallway	Ceiling	Beam	Wood		Intact	Negative	0.08
35	10/20/2016	Building One	West Hallway	Window	Frame	Wood	В	Intact	Negative	0
36	10/20/2016	Building One	Women's Restroom	Wall		Plaster	А	Intact	Negative	0.07
37	10/20/2016	Building One	Women's Restroom	Wall	Tile	Plaster	С	Intact	Negative	0.06
38	10/20/2016	Building One	Women's Restroom	Ceiling		Plaster		Intact	Negative	0
39	10/20/2016	Building One	Women's Restroom	Door	Frame	Wood	D	Intact	Negative	0.02
40	10/20/2016	Building One	Women's Restroom	Floor	Tile	Ceramic		Intact	Negative	0.01
41	10/20/2016	Building One	1	Wall		Plaster	В	Intact	Negative	0.17
42	10/20/2016	Building One	1	Wall		Plaster	D	Intact	Negative	0
43	10/20/2016	Building One	1	Window	Frame	Wood	D	Intact	Negative	0.4
44	10/20/2016	Building One	1	Window	Sill	Wood	D	Intact	Negative	0
45	10/20/2016	Building One	1	Baseboard		Wood	А	Intact	Negative	0.04
46	10/20/2016	Building One	1	Door	Jamb	Wood	В	Intact	Positive	3.6
47	10/20/2016	Building One	2	Wall		Plaster	А	Intact	Negative	0.02
48	10/20/2016	Building One	2	Wall		Plaster	С	Intact	Negative	0
49	10/20/2016	Building One	2	Window	Frame	Wood	D	Intact	Negative	0.06
50	10/20/2016	Building One	2	Window	Sill	Wood	D	Intact	Negative	0.07
51	10/20/2016	Building One	2	Baseboard		Wood	В	Intact	Negative	0.25
52	10/20/2016	Building One	2	Door	Jamb	Wood	В	Intact	Positive	2.5
53	10/20/2016	Building One	3	Wall		Plaster	В	Intact	Negative	0.23
54	10/20/2016	Building One	3	Wall		Plaster	D	Intact	Negative	0.01
55	10/20/2016	Building One	3	Window	Frame	Wood	D	Intact	Negative	0.09
56	10/20/2016	Building One	3	Window	Sill	Wood	D	Intact	Negative	0.01
57	10/20/2016	Building One	3	Baseboard		Wood	А	Intact	Negative	0
58	10/20/2016	Building One	3	Door	Jamb	Wood	В	Intact	Positive	5.6
59	10/20/2016	Building One	4	Wall		Plaster	А	Intact	Negative	0.02
60	10/20/2016	Building One	4	Wall		Plaster	С	Intact	Negative	0
61	10/20/2016	Building One	4	Window	Frame	Wood	D	Intact	Negative	0
62	10/20/2016	Building One	4	Window	Sill	Wood	D	Intact	Negative	0.04
63	10/20/2016	Building One	4	Baseboard		Wood	В	Intact	Negative	0.22
64	10/20/2016	Building One	4	Door	Jamb	Wood	В	Intact	Negative	0.3
65	10/20/2016	Building One	North Hallway	Wall		Plaster	А	Intact	Negative	0
66	10/20/2016	Building One	North Hallway	Wall		Plaster	С	Intact	Negative	0
67	10/20/2016	Building One	North Hallway	Door	Frame	Wood	А	Intact	Negative	0

68	10/20/2016	Building One	North Hallway	Window	Frame	Wood	А	Intact	Nogativo	0.16
69	10/20/2016	Building One	North Hallway	Baseboard	Fidille	Wood	A	Intact	Negative Negative	0.10
70	10/20/2016	•	Kitchen	Wall		Plaster			0	0.01
70 71	10/20/2016	Building One	Kitchen	Wall	Tile	Ceramic	A	Intact	Negative	0.05
71	10/20/2016	Building One Building One	Kitchen	Door	Frame	Wood	A	Intact	Negative Negative	0.01
72		-	Janitor	Wall	Fidille	Plaster	A	Intact	-	
	10/20/2016	Building One					B	Intact	Negative	0
74 75	10/20/2016	Building One	Janitor	Wall	Гискос	Plaster	D	Intact	Negative	0.13
75	10/20/2016	Building One	Janitor	Door	Frame	Wood	C	Intact	Negative	0.26
76	10/20/2016	Building One	Dining Room	Wall		Brick	A	Intact	Negative	0.11
77	10/20/2016	Building One	Dining Room	Wall		Plaster	В	Intact	Negative	0
78	10/20/2016	Building One	Dining Room	Wall		Plaster	D	Intact	Negative	0.09
79	10/20/2016	Building One	Dining Room	Window	Sash	Wood	Α	Intact	Positive	13.4
80	10/20/2016	Building One	Dining Room	Door	Frame	Wood	D	Intact	Negative	0.2
81	10/20/2016	Building One	Dining Room	Door	Jamb	Wood	D	Intact	Negative	0
82	10/20/2016	Building One	Auditorium	Wall		Plaster	А	Intact	Negative	0
83	10/20/2016	Building One	Auditorium	Wall		Plaster	В	Intact	Negative	0.05
84	10/20/2016	Building One	Auditorium	Wall		Plaster	С	Intact	Negative	0.1
85	10/20/2016	Building One	Auditorium	Wall		Plaster	D	Intact	Negative	0.09
86	10/20/2016	Building One	Auditorium	Baseboard		Wood	В	Intact	Negative	0
87	10/20/2016	Building One	Auditorium	Door	Frame	Wood	А	Intact	Negative	0.02
88	10/20/2016	Building One	Auditorium	Door	Jamb	Wood	А	Intact	Negative	0
89	10/20/2016	Building One	Auditorium	Ceiling		Plaster		Intact	Negative	0.01
90	10/20/2016	Building One	Auditorium	Ceiling	Beam	Wood		Intact	Negative	0.07
91	10/20/2016	Building One	Auditorium	Column		Wood		Intact	Negative	0
92	10/20/2016	Building One	Auditorium	Railing		Metal	С	Intact	Negative	0.03
93	10/20/2016	Building One	Office 1	Wall		Plaster	В	Intact	Negative	0.2
94	10/20/2016	Building One	Office 1	Wall		Plaster	D	Intact	Negative	0
95	10/20/2016	Building One	Office 1	Door	Frame	Wood	А	Intact	Negative	0
96	10/20/2016	Building One	Office 1	Window	Sill	Wood	С	Intact	Negative	0.05
97	10/20/2016	Building One	Office 2	Wall		Plaster	В	Intact	Negative	0.08
98	10/20/2016	Building One	Office 2	Wall		Plaster	D	Intact	Negative	0.01
99	10/20/2016	Building One	Office 2	Door	Jamb	Wood	A	Intact	Negative	0.02
100	10/20/2016	Building One	Office 2	Window	Frame	Wood	C	Intact	Negative	0
101	10/20/2016	Building One	Conference Room	Wall	anne	Plaster	A	Intact	Negative	0.3
101	10/20/2010	Building One		** dii		i laster		muut	i courie	0.5


			_							
102	10/20/2016	Building One	Conference Room	Wall		Plaster	С	Intact	Negative	0.06
103	10/20/2016	Building One	Conference Room	Door	Frame	Wood	А	Intact	Negative	0.5
104	10/20/2016	Building One	Conference Room	Window	Frame	Wood	С	Intact	Negative	0.5
105	10/20/2016	Building One	5	Wall		Plaster	А	Intact	Negative	0
106	10/20/2016	Building One	5	Wall		Plaster	С	Intact	Negative	0
107	10/20/2016	Building One	5	Door	Frame	Wood	D	Intact	Negative	0.19
108	10/20/2016	Building One	5	Door	Jamb	Wood	D	Intact	Negative	0.24
109	10/20/2016	Building One	5	Window	Frame	Wood	В	Intact	Negative	0.14
110	10/20/2016	Building One	5	Baseboard		Wood	А	Intact	Negative	0.03
111	10/20/2016	Building One	6	Wall		Plaster	А	Intact	Negative	0
112	10/20/2016	Building One	6	Wall		Plaster	В	Intact	Negative	0
113	10/20/2016	Building One	6	Door	Frame	Wood	D	Intact	Negative	0.13
114	10/20/2016	Building One	6	Door	Jamb	Wood	D	Intact	Negative	0
115	10/20/2016	Building One	6	Window	Frame	Wood	В	Intact	Negative	0.3
116	10/20/2016	Building One	6	Baseboard		Wood	А	Intact	Negative	0.01
117	10/20/2016	Building One	7	Wall		Plaster	А	Intact	Negative	0.2
118	10/20/2016	Building One	7	Wall		Plaster	С	Intact	Negative	0.01
119	10/20/2016	Building One	7	Door	Frame	Wood	D	Intact	Negative	0
120	10/20/2016	Building One	7	Door	Jamb	Wood	D	Intact	Positive	5.8
121	10/20/2016	Building One	7	Window	Frame	Wood	В	Intact	Negative	0.05
122	10/20/2016	Building One	7	Baseboard		Wood	А	Intact	Negative	0.21
123	10/20/2016	Building One	8	Wall		Plaster	А	Intact	Negative	0.04
124	10/20/2016	Building One	8	Wall		Plaster	В	Intact	Negative	0.2
125	10/20/2016	Building One	8	Door	Frame	Wood	D	Intact	Positive	4.1
126	10/20/2016	Building One	8	Door	Jamb	Wood	D	Intact	Negative	0
127	10/20/2016	Building One	8	Window	Frame	Wood	В	Intact	Negative	0
128	10/20/2016	Building One	8	Baseboard		Wood	А	Intact	Negative	0.16
129	10/20/2016	Building One	Men's Restroom	Wall		Plaster	А	Intact	Negative	0.21
130	10/20/2016	Building One	Men's Restroom	Wall	Tile	Ceramic	С	Intact	Negative	0.03
131	10/20/2016	Building One	Men's Restroom	Ceiling		Plaster		Intact	Negative	0
132	10/20/2016	Building One	Men's Restroom	Window	Frame	Wood	А	Intact	Negative	0.02
133	10/20/2016	Building One	Men's Restroom	Window	Sill	Wood	А	Intact	Negative	0.13
134	10/20/2016	Building One	Men's Restroom	Floor	Tile	Ceramic		Intact	Negative	0.27
135	10/20/2016	Building One	Men's Restroom	Door	Frame	Wood	В	Intact	Negative	0

				-			-			
136	10/20/2016	Building One	Men's Restroom	Door	Jamb	Wood	В	Intact	Negative	0.06
137	10/20/2016	Building Two	Exterior	Wall		Stucco	А	Intact	Negative	0.08
138	10/20/2016	Building Two	Exterior	Wall		Stucco	В	Intact	Negative	0
139	10/20/2016	Building Two	Exterior	Wall		Stucco	С	Intact	Positive	2.6
140	10/20/2016	Building Two	Exterior	Wall		Stucco	D	Intact	Negative	0.15
141	10/20/2016	Building Two	Exterior	Door	Frame	Metal	С	Intact	Negative	0
142	10/20/2016	Building Two	Exterior	Door	Jamb	Metal	С	Intact	Positive	5.8
143	10/20/2016	Building Two	Exterior	Window	Frame	Wood	Α	Intact	Positive	2.9
144	10/20/2016	Building Two	Exterior	Window	Sash	Metal	А	Intact	Negative	0.02
145	10/20/2016	Building Two	Exterior	Overhang	Ceiling	Stucco	С	Intact	Positive	2.6
146	10/20/2016	Building Two	Exterior	Overhang	Column	Metal	С	Intact	Positive	6.3
147	10/20/2016	Building Two	9A	Wall		Plaster	А	Intact	Negative	0.04
148	10/20/2016	Building Two	9A	Wall		Plaster	В	Intact	Negative	0.17
149	10/20/2016	Building Two	9A	Door	Frame	Metal	С	Intact	Negative	0
150	10/20/2016	Building Two	9A	Door	Jamb	Metal	С	Intact	Negative	0.04
151	10/20/2016	Building Two	9A	Window	Sash	Metal	Α	Intact	Positive	2.5
152	10/20/2016	Building Two	9A	Window	Frame	Metal	А	Intact	Negative	0.01
153	10/20/2016	Building Two	10A	Wall		Plaster	В	Intact	Negative	0
154	10/20/2016	Building Two	10A	Wall		Plaster	D	Intact	Negative	0.05
155	10/20/2016	Building Two	10A	Door	Frame	Metal	С	Intact	Negative	0
156	10/20/2016	Building Two	10B	Wall		Plaster	В	Intact	Negative	0.5
157	10/20/2016	Building Two	10B	Wall		Plaster	D	Intact	Negative	0.16
158	10/20/2016	Building Two	10B	Door	Frame	Metal	С	Intact	Negative	0.02
159	10/20/2016	Building Two	10B	Window	Sash	Metal	А	Intact	Negative	0.02
160	10/20/2016	Building Two	10B	Window	Frame	Wood	А	Intact	Negative	0.11
161	10/20/2016	Building Two	11B	Wall		Plaster	А	Intact	Negative	0
162	10/20/2016	Building Two	11B	Wall		Plaster	С	Intact	Negative	0
163	10/20/2016	Building Two	11B	Door	Frame	Metal	С	Intact	Negative	0.4
164	10/20/2016	Building Two	12 B	Wall		Plaster	В	Intact	Negative	0.24
165	10/20/2016	Building Two	12 B	Wall		Plaster	D	Intact	Negative	0
166	10/20/2016	Building Two	12 B	Door	Frame	Metal	С	Intact	Negative	0.01
167	10/20/2016	Building Two	12A	Wall		Plaster	А	Intact	Negative	0
168	10/20/2016	Building Two	12A	Wall		Plaster	В	Intact	Negative	0
169	10/20/2016	Building Two	12A	Door	Frame	Metal	С	Intact	Negative	0.01
	• •	5							Ũ	

170	10/20/2016	Building Two	12A	Window	Sash	Metal	А	Intact	Negative	0
171	10/20/2016	Building Two	13B	Wall		Plaster	А	Intact	Negative	0
172	10/20/2016	Building Two	13B	Wall		Plaster	С	Intact	Negative	0.5
173	10/20/2016	Building Two	13B	Door	Frame	Metal	С	Intact	Negative	0.24
174	10/20/2016	Building Two	Staff Room	Wall		Plaster	В	Intact	Negative	0.12
175	10/20/2016	Building Two	Staff Room	Wall		Plaster	D	Intact	Negative	0
176	10/20/2016	Building Two	Staff Room	Door	Frame	Metal	С	Intact	Negative	0
177	10/20/2016	Building Two	Staff Room	Window	Frame	Wood	А	Intact	Negative	0.01
178	10/20/2016	Building Three	Exterior	Wall		Stucco	А	Intact	Negative	0
179	10/20/2016	Building Three	Exterior	Wall		Stucco	В	Intact	Negative	0.02
180	10/20/2016	Building Three	Exterior	Wall		Stucco	С	Intact	Negative	0.01
181	10/20/2016	Building Three	Exterior	Wall		Stucco	D	Intact	Negative	0.17
182	10/20/2016	Building Three	Exterior	Door	Frame	Metal	В	Intact	Negative	0.12
183	10/20/2016	Building Three	Exterior	Door	Jamb	Metal	В	Intact	Negative	0
184	10/20/2016	Building Three	Exterior	Window	Frame	Wood	D	Intact	Negative	0
185	10/20/2016	Building Three	Exterior	Window	Sash	Metal	D	Intact	Negative	0.01
186	10/20/2016	Building Three	Exterior	Overhang	Ceiling	Stucco	В	Intact	Negative	0.03
187	10/20/2016	Building Three	Exterior	Overhang	Column	Metal	В	Intact	Positive	5.2
188	10/20/2016	Building Three	Exterior	Overhang	Ceiling	Wood	D	Intact	Positive	2.1
189	10/20/2016	Building Three	Exterior	Overhang	Facia	Wood	D	Intact	Positive	1.5
190	10/20/2016	Building Three	Exterior	Window	Leuver	Metal	D	Intact	Negative	0
191	10/20/2016	Building Three	13	Wall		Wallboard	А	Intact	Negative	0.06
192	10/20/2016	Building Three	13	Wall		Wallboard	В	Intact	Negative	0.26
193	10/20/2016	Building Three	13	Wall		Wallboard	С	Intact	Negative	0.01
194	10/20/2016	Building Three	13	Wall		Wallboard	D	Intact	Negative	0.01
195	10/20/2016	Building Three	13	Door	Frame	Metal	В	Intact	Negative	0.01
196	10/20/2016	Building Three	13	Door	Jamb	Metal	В	Intact	Negative	0.16
197	10/20/2016	Building Three	13	Window	Frame	Metal	D	Intact	Negative	0
198	10/20/2016	Building Three	12	Wall		Wallboard	А	Intact	Negative	0.03
199	10/20/2016	Building Three	12	Wall		Wallboard	В	Intact	Negative	0.02
200	10/20/2016	Building Three	12	Wall		Wallboard	С	Intact	Negative	0.11
201	10/20/2016	Building Three	12	Wall		Wallboard	D	Intact	Negative	0.08
202	10/20/2016	Building Three	12	Door	Frame	Metal	В	Intact	Negative	0
203										
203	10/20/2016	Building Three	12	Door	Jamb	Metal	В	Intact	Negative	0.01

204	10/20/2016	Building Three	12	Window	Frame	Metal	D	Intact	Negative	0.05
205	10/20/2016	Building Three	11	Wall		Wallboard	А	Intact	Negative	0.15
206	10/20/2016	Building Three	11	Wall		Wallboard	В	Intact	Negative	0.05
207	10/20/2016	Building Three	11	Wall		Wallboard	С	Intact	Negative	0.02
208	10/20/2016	Building Three	11	Wall		Wallboard	D	Intact	Negative	0.14
209	10/20/2016	Building Three	11	Door	Frame	Metal	D	Intact	Negative	0.11
210	10/20/2016	Building Three	11	Door	Jamb	Metal	D	Intact	Negative	0.01
211	10/20/2016	Building Three	11	Window	Frame	Metal	D	Intact	Negative	0
212	10/20/2016	Building Three	Restroom 1	Wall		Plaster	А	Intact	Negative	0.02
213	10/20/2016	Building Three	Restroom 1	Wall		Plaster	В	Intact	Negative	0.01
214	10/20/2016	Building Three	Restroom 1	Wall	Tile	Ceramic	С	Intact	Positive	12.1
215	10/20/2016	Building Three	Restroom 1	Ceiling		Plaster	D	Intact	Negative	0.02
216	10/20/2016	Building Three	Restroom 1	Door	Frame	Metal	С	Intact	Negative	0.06
217	10/20/2016	Building Three	Restroom 1	Window	Frame	Metal	В	Intact	Negative	0.22
218	10/20/2016	Building Three	Restroom 2	Wall		Plaster	А	Intact	Negative	0.12
219	10/20/2016	Building Three	Restroom 2	Wall	Tile	Ceramic	С	Intact	Positive	10.5
220	10/20/2016	Building Three	Restroom 2	Ceiling		Plaster		Intact	Negative	0
221	10/20/2016	Building Three	Restroom 2	Door	Frame	Metal	С	Intact	Negative	0.4
222	10/20/2016	Building Three	Restroom 2	Window	Frame	Metal	D	Intact	Negative	0
223	10/20/2016	Building Three	10	Wall		Wallboard	А	Intact	Negative	0.01
224	10/20/2016	Building Three	10	Wall		Wallboard	В	Intact	Negative	0.01
225	10/20/2016	Building Three	10	Wall		Wallboard	С	Intact	Negative	0
226	10/20/2016	Building Three	10	Wall		Wallboard	D	Intact	Negative	0.08
227	10/20/2016	Building Three	10	Door	Frame	Metal	В	Intact	Negative	0.4
228	10/20/2016	Building Three	10	Window	Frame	Metal	В	Intact	Negative	0
229	10/20/2016	Calibration							Positive	1
230	10/20/2016	Calibration							Positive	1.2
231	10/20/2016	Calibration							Positive	1.2
	Total Readings		231			Action Level -		1		
F	Positive Readings		30			Units		mg/cm^2		

APPENDIX B: SITE PLAN

APPENDIX B: SAMPLE LOCATION DIAGRAM Project No. 16-170535.3

APPENDIX C: CERTIFICATIONS

Alfredo Torres California DOSH Certified Asbestos Consultant (CAC) #10-4593 California DPH Certified Lead Inspector Assessor (CLIA) #17424

State of California Division of Occupational Safety and Health **Certified Asbestos Consultant**

Alfredo A Torres OF

Expires on 01/20/18 This certification was issued by the Division of Occupational Sefety and Health as authorized by Sections 7180 et seq. of the Business and Professions Code.

State of California Division of Occupational Safety and Health Certified Asbestos Consultant

Kevin A Roberts

Certification No. 94-1524

Expires on 11/09/16 C This certification was issued by the Division of Occupational Service and Health as authorized by Sections 7180 et sea at the Business and Professions Code.

\mathcal{B} e it known to all persons that the following individual pursuant to the requirements for education, experience and examination established by the National Registry of Environmental Professionals is entitled to all of the rights and privileges by the body and to be duly registered by it.

Rational Registry of Environmental Professionals

This is to certify that **Jenny Redlin**

Registered Environmental Property Assessor

This certificate will remain valid only if it bears the seal of the current year, unless revoked, suspended or invalidated by order of the Board of Directors of the National Registry of Environmental Professionals.

Witness our hand 04/24/2013

This Day_

Executive Director

REPA 929174

Registration Number: _

This certificate is the property of the National Registry of Environmental Professionals and must upon demand be returned.

APPENDIX D: PHOTOGRAPHIC DOCUMENTATION

1. View of the stucco exteriors.

3. View of the 12x12 acoustic ceiling tiles.

5. View of the blue speck sheet vinyl flooring.

7. View of the exterior window components.

2. View of the spray applied acoustic ceiling material.

4. View of the beige 12x12 vinyl floor tile.

6. View of the wood door components.

8. View of the mercury thermostats.

9. View of the patio overhang components.

11. View of the lead containing ceramic tiles.

13. View of the grey rolled on roofing.

15. View of the brown asphalt roof shingles.

10. View of the concrete window sills.

12. View of the lead containing ceramic tiles.

14. View of the exterior overhang components.

16. View of the grey roof mastic.

APPENDIX E: FORM 8552

LEAD HAZARD EVALUATION REPORT

9									
Section 1 – Date of Lead Hazard Evaluation 10-20-2016									
Section 2 — Type of Lead Hazard Evaluation (Check one box only)									
🖌 Lead Inspection 📃 Risk assessment 📃 Clearance Inspection 📃 Other (specify)									
Section 3 - Structure Whe									
Address [number, street, apartment (if applicable)] City County Zip Code									
5679 Hollister Ave		Goleta		93114					
Construction date (year) of structure	Type of structure		Children living in structure	?					
orstructure	Multi-unit building	🗸 School or daycare	📃 Yes 🗹 No						
	Single family dwelling	Other	Don't Know						
Section 4 - Owner of Struc	ture (if business/agency	, list contact person)							
Name			Telephone number						
Address [number, street, apartme	ent (if applicable)]	City	State	Zip Code					
Section 5 - Results of Lea	d Hazard Evaluation (che	eck all that apply)		_					
No lead-based paint detect	ted 🖌 Intact lead	-based paint detected	✓ Deteriorated lead-bas	ed paint detected					
No lead hazards detected	Lead-contaminated d	ust found 📃 Lead-contar	minated soil found 📃 Othe	er					
Section 6 – Individual Con	ducting Lead Hazard Eva	aluation							
Name			Telephone number						
Alfredo Torres			310-200-4006						
Address [number, street, apartme	ent (if applicable)]	City	State	Zip Code					
1027 Oakdale Str	eet	Corona	Са	92880					
CDPH certification number	S	Signature	1	Date					
17424		alter (h	<mark>10-26-2016</mark>					
Name and CDPH certification nu	mber of any other individuals	conducting sampling or testing	(if applicable)						
17424		alter ((if applicable)						

Section 7 - Attachments

A. A foundation diagram or sketch of the structure indicating the specifc locations of each lead hazard or presence of lead-based paint;

B. Each testing method, device, and sampling procedure used;

C. All data collected, including quality control data, laboratory results, including laboratory name, address, and phone number.

First copy and attachments retained by inspector

Second copy and attachments retained by owner

Third copy only (no attachments) mailed or faxed to:

California Department of Public Health Childhood Lead Poisoning Prevention Branch Reports 850 Marina Bay Parkway, Building P, Third Floor Richmond, CA 94804-6403 Fax: (510) 620-5656